FastML Science Benchmarks: Accelerating Real-Time Scientific Edge ML
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Aim to provide datasets, objectives,
constraints, a reference solution, and
metrics for each task.

* Current material on

Eager to scale this effort to incorporate
new scientific domains and new kinds of

github.

technical challenges.

* How to effectively curate these tasks?

Aim to highlight

the unique challenges.

“Representative” versus “cutting-edge”?

* “Nutrition facts” summary for each task?
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Nutrition Facts

4 servings per container
Serving size 1 cup (227g)
|

Amount per serving

Calories 280
9% Daily Value*

Total Fat 9g 12%
Saturated Fat 4.5g 23%
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https://github.com/fastmachinelearning/fastml-science

Grand challenges, moonshots

Benchmarks are great but net super glamerous, instead. ..
Capture peeple' s imagination of what's pessible frem the science side
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Grand challenges, moonshots

Scientific Grand Challenges spur innovation

LHC: all sub-detectors analyzing data at 40 MHz
DUNE: expansive (non-)accelerator v program (solar, supernova, proton decay, 3 decay)
Accelerator controls with adaptive online agents and digital twin
Science:
- Quantum,
- Magnet development,
- Fusion,
- Neuroscience,
- Nuclear,
- Material sciences, etc.

Industry: Internet-of-Things, AVs, manufacturing
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Grand challenges, moonshots

Grand challenges are multi-scale problems:

Real-time processing, control, reconstruction, simulation, analysis
— Edge Al, Efficient Al, Foundation models, Digital Twins, Robustness, UQ
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Scientific Grand Challenge = Z1..n {benchmarks}i

- Compile benchmarks as a critical path to grand challenges
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Example Moonshot: analyze all data
from LHC

Benchmarks:

- Read out pixel detector at 40 MHz

with full fidelity, e.g. smart pixels

- Enable real-time streaming

processing (40 MHz scouting), e.g.
dark machines

- Offline tracking at 200 PU with same

performance as 60 PU with 10x
speedup/event, e.g. ExaTrkX
challenge

- Accelerate fast simulations by 100x

with same fidelity as full simulation,
e.g. Calo Challenge

- Enable automized calibrations (no

more re-reconstruction), .e.g ??
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Scientific Grand Challenge = Z1..n {benchmarks}i

- Compile benchmarks as a critical path to grand challenges
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Example Moonshot: neutrino physics
Benchmarks:

- Improve SuperNova Burst streaming

signal acceptance by XX% with data
reduction rate of YY

- Enable ZZ sensitivity to neutrinoless

double beta decay with low energy
reconstruction task A

- Charge current reconstruction

performance with resolution of o

- 777
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Scientific Grand Challenge = Z1..n {benchmarks}i

- Compile benchmarks as a critical path to grand challenges
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Another axis for benchmark metrics: Robustness and UQ

* What happens when the detector, environment, conditions change?
* Develop new benchmarks for robust science use-cases
* harder to develop benchmarks

A nice example:

RoBuUsTBENCH Leaderboards Paper FAQ Contribute Model Zoo %

) RoBusTBENCH

A standardized benchmark for adversarial robustness

The goal of RobustBench is to systematically track the real progress in adversarial robustness. There are already more than 3'000 papers on this topic, but it is still unclear which
approaches really work and which only lead to overestimated robustness. We start from benchmarking common corruptions, £.- and #3-robustness since these are the most
studied settings in the literature. We use AutoAttack, an ensemble of white-box and black-box attacks, to standardize the evaluation (for details see our paper) of the £, robustness

and CIFAR-10-C for the evaluation of robustness to common corruptions. Additionally, we open source the RobustBench library that contains models used for the leaderboard to
facilitate their usage for downstream applications.

To prevent potential overadaptation of new defenses to AutoAttack, we also welcome external evaluations based on adaptive attacks, especially where AutoAttack flags a
potential overestimation of robustness. For each model, we are interested in the best known robust accuracy and see AutoAttack and adaptive attacks as complementary.
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Vision
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Scientific Moonshots
Domain A Domain N
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Extra



FastML Science Benchmarks: Accelerating Real-Time Scientific Edge ML

Experiments continuously evolve to
probe shorter distances + timescales.

* Powerful detectors — large data volumes

* Require some shrewd selection or
distillation at the edge.

— Increasingly with ML, deep neural nets

Benchmarks guide development of
next-gen edge ML hardware + software.

» Science tasks eclipse current standards!

We've developed a set of science
benchmarks, including representative
tasks across a range of domains.

* Eager to collaborate, expand to a wider
range of benchmarks!
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Figure: Reference latencies and streaming input data rates for
common industry benchmarks and FastML Science.
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FastML Science Benchmarks: Accelerating Real-Time Scientific Edge ML

Bending magnet

Sensor data compression
* Next-gen “imaging calorimeter”

« ASIC — area, power constraints

in-situ measurement Environment
feedback

Booster
Synchrotron

Power supply
control system

Programmable

logic

_<J Control signal
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Supervised classification of particle jets
« LHC Trigger: 100 TB/s (Virtex Ultrascale+)
* 1 s latency, 150 ns pipeline

High-granularity Algorithms Output to
detector data trigger path
Normalizer | —> | Cell
* max
Neural /
Network
Shape-
Encoder \

Accelerator beam controls

FPGA controller interacts with ‘environment’

— Reinforcement learning

Inputs from 50 devices across accel. complex.

ll41p!Mpueq uo!ss!wsueJ:L
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FastML Science Benchmarks: Accelerating Real-Time Scientific Edge ML

Bentc;I;r:ark repre[s?::\?ation ML type Latency Throughput Target platform M(g[:{slr:;?;‘j‘?
LHC Sensor image unsupervised 10-100ns 1-10 TBps ASIC
LHC Trigger Point cloud supervised 0.1-100us 1-10 TBps FPGA
Neutrino Image/spectral | unsupervised 1s - 5 min 1-50 GBps ASIC / GPU(?)

Acgsrlﬁ:g;tor spectral control 1ms 100 kBps FPGA
4D TEM image unsupervised 50us 1 GBps FPGA
Qubit readout RF spectral supervised 0.1-1ns 50 GBps FPGA
Fusion image supervised 5-20us 1-10 GBps FPGA
Neuro spectral unsupervised 1ms 5 MBps ASIC (?)

(And many more...)
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What is the most impactful set of material to highlight?

Power budget, number of operations, ...
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