DIFFERENTIAL EQUATION MODEL OF TUNE RIPPLE EFFECT ON BEAM SPILL RIPPLE IN RFKO SLOW EXTRACTION

Z. J. Wang^{1,2}, H. J. Yao^{1,2}, X. Y. Liu^{1,2}, Y. Li^{1,2}, Y. Xiong^{1,2}, S. X. Zheng^{1,2}[†], X. W. Wang^{1,2}, Key Laboratory of Particle & Radiation Imaging (Tsinghua University), Ministry of Education, Beijing, China W. B. Ye, State Key Laboratory of Intense Pulsed Radiation Simulation and Effect (Northwest Institute of Nuclear Technology), Xi'an, China

¹ also at Laboratory for Advanced Radiation Sources and Application, Tsinghua University, Beijing, China ² also at Department of Engineering Physics, Tsinghua University, Beijing, China †zhengsx@tsinghua.edu.cn

Background

- > The beam spill uniformity is an important factor that must be considered in the third order slow extraction optimization.
- > The tune ripple caused by the power supply ripple is an important factor that causes the beam uniformity to deteriorate.
- Existing models of how the tune ripple transfers to the beam spill ripple in RFKO slow extraction can't specify how to optimize RF signal because the \triangleright excitation effect of the RF signal on the beam is described as only one variable on average.
- > We attempt to establish a model in which the excitation effect of the RF signal on the beam is not described as only one variable on average but two on the extraction and diffusion region.

- > Excitation effect of the RF signal on the beam is described as two variables corresponding to the extraction and diffusion region respectively. Then a new differential equation model of the tune ripple effect on beam spill ripple is established and solved.
- > Two preliminary conclusions are obtained and checked by simulation which validates the reliability of this model. At last, this model has the potential to provide the optimal RF signal theoretically.