Hadronic cross sections measurement for the muon g-2 calculation

Fabio Anulli INFN - Sezione di Roma

fabio.anulli@roma1.infn.it on behalf of the BABAR Collaboration

22nd Conference on Flavor Physics and CP Violation (FPCP 2024) Bangkok, Thailand - May 27-31, 2024

The anomalous magnetic moment of the leptons

$$\vec{\mu} = g \frac{e}{2m} \vec{s}, \quad a = \frac{g-2}{2}$$

- (1928) pointlike Dirac particles: g=2, a=1
- (1948) anomaly discovered for the electro - $a_e^{\exp} = (1.19 \pm 0.05) \ 10^{-3}$ (Kusch-Foley
- (1948) explained by O(α) QED correction
 - $a_e^{\text{th}} = \alpha/2\pi = 1.16 \ 10^{-3}$ (Schwinger)
- First triumph of QED!

 a_l sensitive to quantum fluctuations, not only from QED. ==> Must include all contributions for a precise calculation

Leading Order HVP calculations

- Main contribution to a_{μ} from very low energy region
 - $\sigma(e^+e^- \rightarrow \pi^+\pi^-)$ provides ~73% of the total
- Uncertainty from multi-hadronic channels significant
- Strategy to calculate the total cross section:
 - Sum up exclusive cross sections up to \sqrt{s} ~2 GeV
 - Estimate the remaining (*e.g.* by using isospin relations)
 - Use inclusive cross sections measurements and/or pQCD above \sqrt{s} ~2 GeV

Present status

BNL: Phys. Rev. D. 73 (2006) 072003 FNAL (Run1): Phys. RevL ett. 126 (2021) 141801 FNAL (Run2+3): Phys.Rev.Lett. 131 (2023) 161802 BMW20 (lattice): Nature 593 (2021) 51 CMD-3: arXiv:2303.08834 (2023)

 Muon g-2 Theory Initiative White Paper:

 T. Toyama *et al.*, Phys.Rep. 887 (2020) 1

 $a_{\mu}^{SM} = (116\ 591\ 810 \pm 43) \cdot 10^{-11}$

Experiment (BNL + FNAL Run 1-3) $a_{\mu}^{exp} = (116\ 592\ 059 \pm 22) \times 10^{-11} (0.19 \text{ ppm})$

Theory-experiment deviation at 5 sigma! But... After WP2020 publication:

- First lattice calculation with small uncertainties (BMW Collaboration)
- Preliminary results on $e^+e^- \rightarrow \pi^+\pi^-$ by CMD-3 at VEPP2000
- Both in tension with previous SM results from e^+e^- data

Hadronic cross sections measurement

Fabio Anulli - Hadronic cross sections — FPCP 2024

How to measure σ_{had}

٠

 $e^+e^- \rightarrow hadrons$ $e^+ m^2 = s = 4E_b^2$

"Conventional" method: Energy Scan

- σ_{had} measured varying the beam energies within the accessible range ==> $\sqrt{s} = 2E_{beam}$
- Well-defined center-of-mass energy
- Low background
- Very good energy resolution
 - precise study of narrow resonances
- Systematics from point-to-point normalization
- Limited energy range covered
- ε → 0 approaching processes thresholds (zeromomentum tracks)

 $e^+e^- \rightarrow \gamma_{\rm ISR} + hadrons$ $e^+ \qquad hadrons$ $m^2 = s' = s(1-x)$ $m^{\gamma} = \frac{E_{\gamma}}{\sqrt{s}}$

"Novel method": <u>Radiative Return</u>

- Developed by KLOE and *BABAR*
- Effective c.m. energy: $\sqrt{s'} = \sqrt{s(1-x)}$
- Continuous and wide spectrum of energies $\sqrt{s'}$ below the nominal \sqrt{s}
- Uniform data quality all-over energy range
- Boost of hadronic system: $\varepsilon \neq 0$ at threshold
 - Higher (and different) background sources main backgrounds from different ISR processes and $e^+e^- \rightarrow q\bar{q}$ production
- Limited mass resolution (~ few MeV)

The players

Energy scan

SND and CMD-2 @VEPP-2M:

- $\sqrt{s} < 1.4 \text{ GeV}$
- $\pi^+\pi^-$ and several multi-hadron channels

SND and CMD-3 @VEPP-2000:

- $0.32 < \sqrt{s} < 2.0 \text{ GeV}$
- $L_{int} = > 1 \, \text{fb}^{-1}$; ~65 pb⁻¹ in the ρ region
- $\pi^+\pi^-$ and many multi-hadron channels

KEDR @VEPP-4M:

- $2 < \sqrt{s} < 4 \text{ GeV}$
- inclusive cross section

Older experiments:

- DM1, DM2, FENICE, BES, BESII,...

BABAR @PEP-II:

- $\sqrt{s} = 10.6 \text{ GeV} (Y(4S) \text{ peak})$
- $L_{int} = 470 \text{ fb}^{-1}$; 232 fb⁻¹ used for $e^+e^- \to \pi^+\pi^-$

ISR

- Covered energy range: 0.3 4.5 GeV
 - >50 final states measured

<u>KLOE @DAΦNE:</u>

- $\sqrt{s} = 1.02 \text{ GeV} (\phi(1020) \text{ peak})$
- $L_{int} = \sim 2 \text{ fb}^{-1}$; 240 pb⁻¹ used for $e^+e^- \to \pi^+\pi^-$
- Covered energy range: 0.3 0.9 GeV

BES III @BEPC-II:

- $\sqrt{s} = 2 4.7 \text{ GeV}$
- main ISR results from data at $\psi(3770)$
- $L_{int}[\psi(3770)] = \sim 20 \text{ fb}^{-1}$; 2.93 fb⁻¹ used for $e^+e^- \to \pi^+\pi^-$
- ISR: 0.6 0.9 GeV $(\pi^+\pi^-)$
- Scan: 2 3.8 GeV (spectroscopy and inclusive cross section)

CLEO-c data

- $\sqrt{s} = 3.77 \& 4.17 \text{GeV}$
- $L_{int} = \sim 1.4 \text{ fb}^{-1} \text{ used for}$ $e^+e^- \rightarrow \pi^+\pi^-$

Belle II @SuperKEK-B

- $\sqrt{s} = 10.6 \text{ GeV} (Y(4S) \text{ peak})$
- ISR program in progress

$e^+e^- \rightarrow \pi^+\pi^-$

- Channel dominated by the huge "p" peak.
- Cross section must be measured at few per mil level in the ρ region
- Accuracy of all measurements limited by systematic uncertainties
- Several measurements with sub percent error available, but tension observed among some of them

$e^+e^- \rightarrow \pi^+\pi^-$: **BABAR**

- Data taken at Y(4S) peak. Tagged analysis (require $E_{\gamma ISR} > 3$ GeV).
- Measure the ratio $\frac{\sigma(e^+e^- \to \pi^+\pi^-(\gamma))}{\sigma(e^+e^- \to \mu^+\mu^-(\gamma))} \implies$ Results rather insensitive to details of MC generator
- Kinematic fit to data allows for one extra photon => measurement at NLO:
- Systematic uncertainty at the ρ peak at 0.5% level, dominated by Particle-ID effects

- Measurement based on half data set (232 fb⁻¹).
 - ~500M selected π + π pairs
- It is the only experiment to cover the cross section from threshold up to ~3 GeV
- New measurement with different analysis strategy in progress.

CMD-3: new $e^+e^- \rightarrow \pi^+\pi^-$

Three VEPP-2000 data taking periods used:

- **RHO2013** mainly ρ -peak L = 17.8 pb⁻¹
- **RHO2018** mainly ρ -peak L = 45.4 pb⁻¹
- **LOW2020** $\sqrt{s} < 0.6 \text{ GeV}$ L = 1 pb⁻¹
- additional data taken after 2021 at $\sqrt{s} > 1.2 \text{ GeV}$
 - Significant accelerator and detector (new drift chamber) upgrade after RHO2013

FPCP 2024

Total uncertainties in the ρ -peak region:

- 0.7% (RHO2018) / 0.9% (RHO2013)

	uncertainty	
Radiative corrections	0.3%	
ee/µµ/ $\pi\pi$ separation	0.2%	
Fiducial volume	→ 0.5% / 0.8%(2013)	
Correlated inefficiency	0.1%	
Trigger	0.05%	
Beam energy	0.1%	
Bremsstrahlung loss	0.05%	
Pion specific loss	0.2% nuclear interaction	
	0.1% pion decay	
	0.7% / 0.9%(2013)	

Fabio Anulli - Hadronic cross sections

Measured Pion FF

 $N_{\pi\pi} = 34 \times 10^{6}$ ==> x30 CMD-2

CMD-3 $e^+e^- \rightarrow \pi^+\pi^-$: Results

CMD-3 vs CMD-3 vs energy $|F_{\pi}|^2$ (and $a_{\mu}^{\pi\pi}$) significantly scan measurements ISR measurements higher than all previous results! CMD-3 syst. uncert. CMD-3 syst. uncert. 0.2g 0.2_F ÷ Ъ CMD-2 --- CMD-2 RESIII العاري 15.15 __ే0.15 BABAR CLEO18 SND 45 - KLOE10 SND F|²/| - SND2k KLOE12 SND2k 0.1 40 BES KLOE10 0.05 0.05 KLOE12 35 CMD3 30 -0.05F -0.05 25 -0.1 -0.1 -0.15 20 68 -0.15 0.82 0.84 0.7 0.72 0.74 0.76 0.78 0.8 s. GeV -0.2<u>L-</u> -0.2 0.9 0.4 0.5 0.6 0.7 0.8 0.5 0.7 1.2 0.6 0.8 0.9 1.1 √s. GeV $a_{\mu}^{\pi\pi,LO}$ [0.6 < \sqrt{s} < 0.88 GeV] • CMD-3: $a_{\mu}^{\pi\pi,LO} = (379.35 \pm 0.30 \pm 2.95)10^{-10}$ before CMD2 CMD2 SND KLOE comb • No clear smoking gun that would explain the difference BABAR • A new scan in the p region is started with the aim to BES CLEO collect ~1 fb⁻¹ SND2k MD3 • huge amount of data for better understanding of 370 360 365 375 380 385 390 systematic effects $a_{u}^{\pi^{+\pi^{-}}}$ (0.6 < \sqrt{s} < 0.88 GeV), 10⁻¹⁰

Fabio Anulli - Hadronic cross sections — FPCP 2024

1.2

√s, GeV

arXiv:2302.08834 (2023)

Exclusive cross sections other than π^{\dagger}

- Main contributions from 3π , 2K and 4π final states
- BABAR: almost complete set of measurements of final states with 2 to 7 hadrons (π, K and η's)
- VEPP-2M: $\sqrt{s} < 1.4$ GeV and relatively low statistics
- VEPP-2000: $\sqrt{s} < 2$ GeV with much higher luminosity. Many new results coming
- BES-III measured a few channels included in the WP2020. More results on the way

Contribution to $a_{\mu}^{HVP,LO}$ ($\sqrt{s} < 1.8 \text{ GeV}$) from DHMZ19 Phys. J. C 80 (2020) 410

channel X	$a_{\mu}^{X}(10^{-10})$	
$\pi^+\pi^-$	507.85 ± 3.38	
$\pi^+\pi^-\pi^0$	46.21 ± 1.45	
π ⁺ π ⁻ π ⁺ π ⁻	13.68 ± 0.31	
$\pi^+\pi^-\pi^0\pi^0$	18.03 ± 0.55	
K+K-	23.08 ± 0.44	
K _S K _L	13.02 ± 0.24	(GeV

 $e^+e^- \rightarrow K^+K^-$

Recent $e^+e^- \rightarrow \pi^+\pi^-\pi^0$ results

- Second largest contribution to $a_{\mu}^{had,LO}$ and its uncertainty
- Dominated at low energies by the ω and ϕ resonances, and then by ω recurrences
- Old data:
 - Precise SND and CMD-2 @VEPP-2M below 1.1 GeV
 - BABAR (80 fb⁻¹) above the φ
- Five new analyses, not in the WP2020, recently produced:
- **BABAR**: ISR@Y(4S) $0.62 < m_{3\pi} < 3.5$ GeV [PRD 104 (2021) 112003]
- BESIII: ISR@ψ(3770) 0.7 < m_{3π} < 3 GeV [arXiv:1912.11208]
- **SND**: scan $1.2 < \sqrt{s} < 2$ GeV [EPJC80, 993 (2020)]
- **BESIII**: scan 2 < √s < 3.08 GeV [arXiv2401.14711]
- CMD-3: scan $0.66 < \sqrt{s} < 0.97$ GeV [preliminary]

BABAR analysis ~469 fb⁻¹

- tagged ISR: 2.5 MeV bin-width at the resonances
- Syst. uncert. at the ω and ϕ peaks ~1.3%.
- Precision on $a_{\mu}^{3\pi}$ improved by a factor ~2

(for $m_{3\pi} < 2 \text{ GeV}$):

 $a_{\mu}^{3\pi} = (45.86 \pm 0.14 \pm 0.58) \, 10^{-10}$

BESIII: Inclusive measurement

Inclusive cross sections above 2 GeV

- Previous results:
- KEDR
 - 1.84 < √s < 3.72 [PLB 770 (2017) 174] [PLB 788 (2019) 42]
 - tot. uncert. 2.6% -> 4%
 - Agree well with pQCD in the region between 2 and 3.8 GeV

- <u>New results from BESIII (not in the WP)</u>
 - 14 points: $2.23 < \sqrt{s} < 3.67$ GeV
 - Precision slightly better than KEDR
 - dominated by systematic uncertainties
 - 2% -> 3% from 2.2 to 3.7 GeV
 - Measured cross section somewhat above KEDR (by 1.9σ) data and pQCD predictions (by 2.7σ)

Measurement of additional radiation in ISR processes

Study of $e^+e^- \rightarrow \mu^+\mu^-\gamma_{ISR}$ and $e^+e^- \rightarrow \pi^+\pi^-\gamma_{ISR}$ with 1 (NLO) or 2 (NNLO) additional hard photons • The full BaBar data sample (~468 fb⁻¹) is used. Data compared with MC generators:

- AfkQed : up to NNLO additional ISR collinear to beams, FSR from PHOTOS
- Phokara 9.1: full matrix elements at NLO (no NNLO)
- All events are subjected to several fits consistent with the event topology
- The fit with the best χ² determine the category of that event
- Small-angle (SA) γ's assumed collinear with the beams.
 Large-angle (LA) γ's detected

NLO event topologies

Two NLO fits:

- $\gamma_{ISR}\gamma_{SA} (E^*_{\gamma_{SA}} > 200 \,\mathrm{MeV})$
- $\gamma_{ISR}\gamma_{LA} (E_{\gamma_{LA}} > 200 \,\mathrm{MeV})$

Three categories:

- NLO LA
- NLO SA
- LO: events with no γ's above threshold

Three NNLO fits and three categories:

- $\gamma_{ISR}\gamma_{SA}\gamma_{SA}$ -> NNLO 2SA
- $\gamma_{ISR}\gamma_{SA}\gamma_{LA}$ -> NNLO SA+LA
- $\gamma_{ISR}\gamma_{LA}\gamma_{LA}$ -> NNLO 2LA

BABAR: Phys. Rev. D108 (2023) 111103

Fabio Anulli - Hadronic cross sections — FPCP 2024

NLO fits results

• Similar results for $\mu\mu$ and $\pi\pi$ samples

• $\pi\pi$ affected by larger background due to other multihadronic processes, largely suppressed by a BDT-based selection

 c NNLO 2LA = 2LA-ISR, LA-ISR + LA-FSR or 2LA-FSR

• AfkQed reproduces well the additional SA photons energy distributions

Consequences for the $\sigma(e^+e^- \rightarrow \pi^+\pi^-)$ **measurements**

- **BABAR** analyses essentially unaffected:
 - loose selection, ππ/μμ ratio, efficiencies from data => no particular dependence from any MC
 - Phokara used for acceptance corrections => Estimated effect (0.03±0.01)% well below the quoted syst. uncertainty of ~0.5%
 - NLO already included in 2009 analysis (one extra photon, SA or LA) allowed
 - New analysis in progress will allow for two extra photons (NNLO)
- Other ISR results (KLOE, BESIII), relying on Phokara, might be affected by:
 - Missing NNLO and higher order contributions
 - Too large MC SA hard-photon rate
 - Recent DHMZ study with fast simulation to estimate such effects [arXiv:2312.02053]
 - A precise estimate of such effects could/should be performed by the experiment themselves

What's in the future

- The $\pi\pi$ channel is still the major source of uncertainty
 - CMD-3 result increases the tension
 - Progress in the theoretical description of radiative corrections is necessary to reach few per mil precision

1 fb⁻¹ collected above 1 GeV ==> many analysis in progress on multi hadron production

1 fb⁻¹ planned in the ρ region

==> Future $\pi\pi$ analyses with much improved control of systematic effects • Impact of other final states becoming very important.

- Goal: measure the main channels at 1-3% total uncertainty
- Sophisticated amplitude analyses needed in most cases
- KEDR @VEPP-4M, BESIII and BelleII may provide new inclusive measurement at $\sqrt{s} > 2$ GeV

New $\pi\pi$ analysis on full data set, with different technique, in progress

=> Effectively \sim x7 data sample

Belle II

ISR program, analogous to BABAR, already started

KLOE

New $\pi\pi$ analysis on full data set in progress => \sim x10 data sample

<mark>€€S</mark>Ⅲ BESIII

20 fb⁻¹ total collected data at $\sqrt{s} = 3770$ MeV (~x6 previous analyses).

Expected improved ISR analysis on many final states

New *BABAR* $e^+e^- \rightarrow \gamma_{ISR} \pi^+\pi^-(\gamma\gamma)$

Conclusions

- The muon *g*-2 is a long standing and among the most solid and significant discrepancies between experiment and SM theory
- Impressive recent improvements in every direction:
 - high quality e^+e^- data from new experiments/analyses
 - new direct measurement at Fermilab $(g-2)_{\mu}$ experiment
 - accuracy of lattice calculations becoming competitive

But the puzzle now is not at all simpler w.r.t. WP!!

Many open questions:

- KLOE vs BABAR vs CMD-3 Where the differences come from?
- Lattice *vs* e+e- data?
- Will the final FNAL and JPARC results confirm the current central value?

BACKUP slides

Fabio Anulli - Measurement of $e^+e^- \rightarrow \pi^+\pi^-\pi^0$ — ICHEP 2022

All had begin with ADA in Frascati.... Bernardini, Corazza, Ghigo, Touschek Il Nuovo Cimento 18, 1293 (1960)

- Many more e^+e^- collider since ADA:
 - c.m. energy up to 200 GeV (LEP-2)
 - Luminosity above

 $10^{34} \text{ cm}^{-2}\text{s}^{-1}$ (*B*-factories) and 10³⁵ cm⁻²s⁻¹ (SuperKEKB)

Why studying e^+e^- annihilation

 e^+e^- annihilation at low energies is a very effective tool to study the structure of the hadrons

- initial state well defined (momentum and quantum numbers)
- the final state can be fully reconstructed
- in general very simple event topology

Perturbative QCD approaches do not apply at low energies

- QCD-based models need experimental data as input
- Nature of many observed exotic states not yet understood
- Precise knowledge of Hadronic Vacuum Polarization (HVP) needed for the calculation of:
 - $\alpha_{OED}(M_Z^2)$: running fine structure constant at the Z⁰ mass
 - (g-2)₁₁: anomalous magnetic moment of the muon

HVP calculations

- Quark loops not computable from QCD (low mass scale)
- Can use dispersion relations, with analyticity and optical theorem to relate the vertex corrections to the $e^+e^- \rightarrow hadrons$ cross section

U

hadrons

μ

K(s)/s ~ 1/s² emphasizes the role of the processes at low energies Fabio Anulli - Hadronic cross sections — FPCP 2024

Muon g-2 Theor $\tilde{y}_{2,4}^{2,6}$

Data combination for calculation of $a_{\mu}^{1.8}$ a_{μ}^{HVP-LO} is quite a delicate procedure.

• >300 data sets from >50 channels $b_{y_2}^{1.4}$ dozens of experiments

Various approaches used to perform the data combination and integration. Among them:

- DHMZ, <u>Eur. Phys. J. C 80 (3) (2020) 241</u>
- KNT, <u>Phys. Rev. D 101 (2020) 014029</u>
- F. Jegerlehner, Springer Tracts Mod. Phys. 274 (2017) 1
- WP 2020 recommended $a_{\mu}^{HVP,LO}$ value is based on a combination of DHMZ and KNT evaluations
- They agree within roughly one sigma.
- Results on $a_{\mu}^{\pi\pi}$ (for $\sqrt{s} < 1.8 \text{ GeV}$):
 - KNT: $a_{\mu}^{HVP,LO}[\pi\pi] = (503.2 \pm 1.9) \cdot 10^{-10}$
 - DHMZ: $a_{\mu}^{HVP,LO}[\pi\pi] = (507.9 \pm 0.8 \pm (3.2)) 10^{-10}$

[GeV]

Recommended WP2020 value from conservative merging of the various evaluations (dominated by the results from DHMZ19 and KNT19):

 $a_{\mu}^{HVP,LO} = (693.1 \pm 2.8_{exp} \pm 2.8_{sys} \pm 0.7_{DV-QCD}) \cdot 10^{-10}$

experimental KLOE-BABAR $\pi\pi$ data vs QCD uncertainties discrepancy differences

The other contributions to a_{μ}

Higher order HVP:

various calculations, all in agreement

- NLO: $a_{\mu}^{HVP,NLO} = (-98.3 \pm 0.7) \cdot 10^{-11}$
- NNLO: $a_{\mu}^{HVP,NNLO} = (12.4 \pm 0.1) \cdot 10^{-11}$

<u>Hadronic Light-By-Light:</u>

estimates with a dispersive relations approach and with lattice calculations compatible. Average value:

• $a_{\mu}^{HLBL} = (92 \pm 18) \cdot 10^{-11}$

QED contributions:

full perturbative calculation ($\alpha = 1/137.035$) 10th order corrections calculated!

• $a_{\mu}Q^{ED} = (116\ 584\ 718.931 \pm 0.104) \cdot 10^{-11}$

Electroweak contributions:

calculated up to two loops and an estimate of leading log contribution beyond 2-loop level

• $a_{\mu}^{EW} = (153.6 \pm 1.0) \cdot 10^{-11}$

Recommended WP20 theory (SM) value: $a_{\mu}^{SM} = (116\ 591\ 810 \pm 43) \cdot 10^{-11}$

Overall estimate of $a_{\mu}^{HVP,LO}$

	DHMZ19	KNT19	Difference
$\pi^+\pi^-$	507.85(0.83)(3.23)(0.55)	504.23(1.90)	3.62
$\pi^+\pi^-\pi^0$	46.21(0.40)(1.10)(0.86)	46.63(94)	-0.42
$\pi^+\pi^-\pi^+\pi^-$	13.68(0.03)(0.27)(0.14)	13.99(19)	-0.31
$\pi^+\pi^-\pi^0\pi^0$	18.03(0.06)(0.48)(0.26)	18.15(74)	-0.12
K^+K^-	23.08(0.20)(0.33)(0.21)	23.00(22)	0.08
$K_S K_L$	12.82(0.06)(0.18)(0.15)	13.04(19)	-0.22
$\pi^0 \gamma$	4.41(0.06)(0.04)(0.07)	4.58(10)	-0.17
Sum of the above	626.08(0.95)(3.48)(1.47)	623.62(2.27)	2.46
[1.8, 3.7] GeV (without $c\bar{c}$)	33.45(71)	34.45(56)	-1.00
J/ψ , $\psi(2S)$	7.76(12)	7.84(19)	-0.08
$[3.7,\infty)$ GeV	17.15(31)	16.95(19)	0.20
Total $a_{\mu}^{\text{HVP, LO}}$	$694.0(1.0)(3.5)(1.6)(0.1)_{\psi}(0.7)_{DV+QCD}$	692.8(2.4)	1.2

The Initial State Radiation method

$$\frac{d\sigma_{e^+e^- \to f\gamma}(s, m_f)}{dm_f \, d\cos\theta_{\gamma}^*} = \frac{2m_f}{s} W(s, x, \theta_{\gamma}^*) \cdot \sigma_{e^+e^- \to f}(m_f)$$

The hadronic cross section $e^+e^- \rightarrow f$ can be extracted from the ISR cross section $e^+e^- \rightarrow \gamma f$.

The radiator function W(s,x) is calculated in QED with accuracy better than 1% level

Common 15K analysis strategy

• Tagged analysis ($E_{\gamma}^* > 3 \text{ GeV}$)

FPCP 2024

- Back-to-back topology btw ISR γ and the rest of the event
- $\pi/K/p$ discrimination based on dE/dx e Cherenkov angle
- Kinematic fit for 4-momentum conservation
- Fitted χ^2 used for signal selection and background subtraction
- Detector acceptances and selection efficiencies estimated with MC simulation

Fabio Anulli - Hadronic cross sections —

ISR method in a nutshell

To tag or not to tag

Tagged approach:

© fully reconstructed events → great background reduction © ~90% signal loss

Untagged approach:

typically higher efficiency
 higher background reduced
 by requiring the missing mass
 consistent with zero

- So, what is the more convenient approach?
 => It depends on experimental situation
- At $\sqrt{s=10.58}$ GeV and for low m_f , (i.e. large x) the hadronic system has a large boost opposite to the photon direction ==> the efficiency is almost insensitive to tagging
 - This is why, at BABAR:
 - Light Quarks final states \iff Tagged analyses
 - Heavy Quarks final states \Leftrightarrow Untagged analyses
- At $\sqrt{s} \approx 1$ GeV (KLOE) untagged analyses are more efficient

$e^+e^- \rightarrow \pi^+\pi^-$: BESIII and "CLEO-c"

BESIII:

- Tagged ISR. $600 < \sqrt{s} < 900$ MeV.
- Normalisation from MC, cross checked with $e^+e^- \rightarrow \mu^+\mu^-$.
- Syst. uncertainties at the ρ -peak: ~0.9%

Analysis of **CLEO-c** data:

- Tagged ISR $300 < \sqrt{s} < 1000$ MeV.
- Normalisation from MC
- Statistical uncertainty: 0.7%
- Syst. uncertainties on a_u : 1.5%

SND: new $e^+e^- \rightarrow \pi^+\pi^-$

• Energy scan at **VEPP-2000**: $0.32 < \sqrt{s} < 2 \text{ GeV}$

- peak luminosity 7x10³¹ cm⁻²s⁻¹
- higher than VEPP-2M (CMD-2)
- ~70% of data in the $\rho\text{-peak}$ region
- This analysis:
 - 10% of collected data, with $525 < \sqrt{s} < 883$ MeV
 - Syst. uncertainties ~0.8%
- $a_{\mu}^{\pi\pi}[525 883 \,\mathrm{MeV}] = (409.79 \pm 1.44 \pm 3.87) \times 10^{-10}$

SND: JHEP 01 (2021) 113

CMD-3 $e^+e^- \rightarrow \pi^+\pi^-$: Results

Details of ρ -region: CMD-3 significantly higher than all other experiments

Interference between $\phi(1020)$ and non-resonant $\pi\pi$

Fabio Anulli - Hadronic cross sections — FPCP 2024

Recent $e^+e^- \rightarrow \pi^+\pi^-\pi^0$ results

68.73 / 75

1.094 ± 0.042

- .4• Second largest contribution to $a_{\mu 3}^{had,LO}$ and in uncertain 2
 - Dominated at low energies by the ω and ϕ resonances, and then by ω recurrences
 - Old data:

.04

- Precise SND and CMD-2 @VEPP-2M below 1.1 GeV
- \widetilde{BABAR} (80 fb⁻¹) above the φ

Five new analyses, not in the WP, recently produced:

- **BABAR**: ISR@Y(4S) $0.62 < m_{3\pi} < 3.5$ GeV [PRD 104 (2021) 112003]
- **BESIII**: ISR@ $\psi(3770)$ 0.7 < $m_{3\pi}$ < 3 GeV [arXiv:1912.11208]
- **SND**: scan $1.2 < \sqrt{s} < 2$ GeV [EPJ C80, 993 (2020)]
- **BESIII**: scan $2 < \sqrt{s} < 3.08$ GeV [arXiv2401.14711]
- **CMD-3**: scan $0.66 < \sqrt{s} < 0.97$ GeV [preliminary]

Clear observation of $\omega(1420)$ and $\omega(1650)$ All recent data inconsistent with old DM2 data

Fabio Anulli - Hadronic cross sections — FPCP 2024

Measurement of additional radiation in ISR processes

- $\chi^+ \mu^- \gamma_{SR}$ and $e^+ e^- \rightarrow \pi^+ \pi^- \gamma_{ISR}$ with 1 (NLO) or 2 (NNLO) additional hard photons Study of e^+e ta sample (4468 fb⁻¹) is used. Data compared with MC generators:
 - vip to NNLO additional ISR collinear to beams, FSR from PHOTOS

 $\gamma_{ISR} 2\gamma_{SA}$

- Phokara 9.1: full matrix elements at NLO (no NNLO)
- All events are subjected to several fits consistent with the event topology
- The fit with the best χ^2 determine the category of that event
- Small-angle (SA) γ 's assumed collinear with the beams. Large-angle (LA) γ 's detected • FSR/ISR separation from angular distance of γ_{LA} to the closest track

e- NLO LA YISR YSA $\gamma_{ISR} \gamma_{LA}$ • NLO SA

NLO event topologies

Two NLO fits:

- $\gamma_{ISR}\gamma_{SA} (E^*_{\gamma_{SA}} > 200 \,\mathrm{MeV})$
- $\gamma_{ISR}\gamma_{LA} (E_{\gamma_{LA}} > 200 \,\mathrm{MeV})$ <u>Three categories:</u>
 - LO: events with no γ 's above threshold

- $\gamma_{ISR}\gamma_{SA}\gamma_{SA} \rightarrow NNLO 2SA$
- $\gamma_{ISR}\gamma_{SA}\gamma_{LA} \rightarrow NNLO SA+LA$

```
• \gamma_{ISR}\gamma_{LA}\gamma_{LA} \rightarrow NNLO 2LA
```

BABAR: Phys. Rev. D108 (2023) 111103

Fabio Anulli - Hadronic cross sections FPCP 2024

 $e^+e^- \rightarrow K^+K^-$

- Cross section dominated by the $\varphi(1020)$ peak
- Precise measurements from BABAR, CMD-2/3 and SND
- Some tension at the peak with new CMD-3 data significantly above the older Novosibirsk results and BABAR data in the middle
- Note: $\varphi(1020)$ just above KK threshold. Very low momentum tracks in energy scan experiments
- Green combination from DHMZ

$e^+e^- \rightarrow KK\pi$ and $KK\pi\pi$

The E821 and E989 direct a_{μ} measurements

- Intense proton beam on target to produce the pion beam.
 - Pions of 3.1 GeV are selected.
- $\pi^+ \rightarrow \mu^+ \nu$ violates P ==> 95% polarisation for forward muons
- μ + stored in a cyclotron: constant *B* field
 - cyclotron frequency ω_c ; spin precessing with freq. ω_s
 - $\omega_a = \omega_s \omega_c = a_\mu eB/m_\mu$
- $\mu \rightarrow evv$ violates $P ==> e^+$ direction (energy in LAB) "remembers" the μ polarization
 - fraction of detected e^+ with $E > E_{\text{threshold}}$ modulated with frequency ω_a

$$N_{ideal}(t) = N_0 \exp(-t/\gamma \tau_{\mu}) \left[1 - A \cos(\omega_a t + \phi)\right],$$

- Precise knowledge of B field critical
 - use of pulsed proton NMR
 - B determined from proton precession frequency and magnetic moment
- a_{μ} extracted from:

$$a_{\mu} = \frac{\omega_a}{\tilde{\omega}_p'(T_r)} \frac{\mu_p'(T_r)}{\mu_e(H)} \frac{\mu_e(H)}{\mu_e} \frac{m_{\mu}}{m_e} \frac{g_e}{2}$$

- measure ω_a and ω_p
- Other quantities from external inputs

Perspectives in direct measurements

- 1. The "Muon g-2" experiment at Fermilab is taking new data
- Final goal: **uncertainty of 0.14** *ppm* (0.1 *ppm* stat., 0.07 *ppm* syst.)
- (now they reached 0.35 *ppm*)
- very ambitious program, but it looks under reach

2. J-PARC E34 Collaboration

- novel method for muon g-2 and EDM measurements
- ultra-cold muons produced from pion decay at rest
- accelerated by a linac at p = 300 MeV
- beam with negligible transverse momentum
 - no need for strong electromagnetic focusing
 => no need of the 3.1 GeV *magic momentum*
- small storage ring (33 cm radius); cyclotron period only 7.4 ns; 3T dipole magnet
- Predicted statistics 10x FNAL
- Final goal: uncertainty of 0.1 ppm

Alternative approach for a_{μ}^{HLO} : MUonE experiment

- Standard approach using e^+e^- data (s > 0 integral in the time-like region) $a^{\text{HLO}}_{\mu} = \left(\frac{\alpha m_{\mu}}{3\pi}\right)^2 \int_{4m_{\pi}^2}^{\infty} ds \; \frac{\hat{K}(s)R_{\text{had}}(s)}{s^2},$
- Alternative approach: $a_{\mu}^{\text{HLO}} = \frac{\alpha}{\pi} \int_{0}^{1} dx (1-x) \Delta \alpha_{\text{had}}[t(x)], \quad t(x) = \frac{x^2 m_{\mu}^2}{x-1} < 0$

 $t = q^2 < 0$ integral in the space-like region => integrand smooth and free of resonances

• Measure the running of $\alpha(t)$ from the elastic scattering $\mu^+e^- \rightarrow \mu^+e^-$ to extract $\Delta\alpha(t)$ $\frac{d\sigma}{dt} = \frac{d\sigma}{dt}$

$$\frac{d\sigma}{dt} = \frac{d\sigma_0}{dt} \left| \frac{\alpha(t)}{\alpha(0)} \right|^2, \qquad \alpha(t) = \frac{\alpha(0)}{1 - \Delta\alpha(t)},$$

• Subtract the leptonic contribution (calculable in perturbation theory) to get: $\Delta \alpha_{had}(t) = \Delta \alpha(t) - \Delta \alpha_{lep}(t)$

MUonE at CERN North-Area

- Fixed target experiment with a 150 GeV muon beam
- *t* variable related to electron scattering angle (and energy)
- Experimental coverage:
 - $-143 < t = q^2 < 0 \text{ GeV}^2$
 - ~87% of all $a_{\mu}^{HVP,LO}$
- Remaining part estimated using timelike data + pQCD, or Lattice+QCD

 $\chi^2/ndf = 237.9/194$

- 40 Be targets, 1.5cm-thick, equipped with Si trackers
- EM calorimeter and muon tracking downstream to measure all components of the final state
- With three years of running at planned conditions, expect a statical uncertainty of $\sim 0.3\%$
- Systematic and theoretical uncertainties to be carefully evaluated
- Results should be competitive and fully independent from e^+e^- data 10^3