

22nd Conference on Flavor Physics and CP Violation (FPCP 2024)

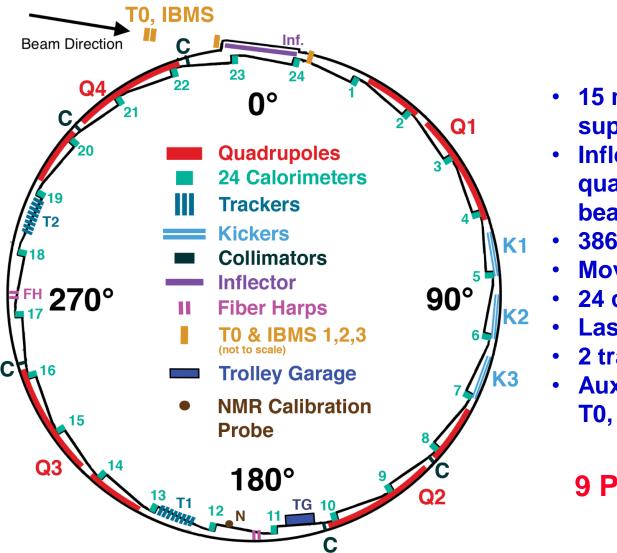
Outlook for Muon g-2 Experiment

Liang Li Shanghai Jiao Tong University

L.Li, Outlook for Muon g-2 Experiment @ FPCP 2024, Bangkok, Thailand

μ

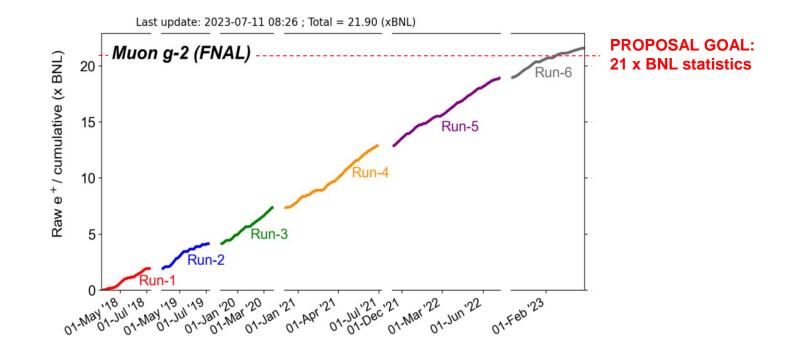
Frequency Measurements


Frequency measurements can be done in very high precision

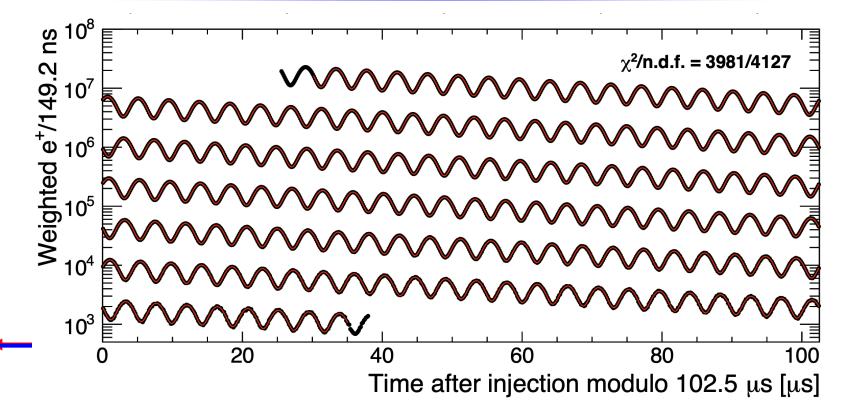
Measure frequency ratio and extract from several measurements

 $\boldsymbol{a}_{\mu} \sim \frac{\boldsymbol{\omega}_{a}}{\langle B \rangle} = \frac{g_{e}}{2} \frac{\boldsymbol{\omega}_{a}}{\boldsymbol{\varpi}_{p}} \frac{m_{\mu}}{m_{e}} \frac{\mu_{p}}{\mu_{e}}$

- ω_p is proton Larmor precession frequency in water sample ($\omega_p \sim |B|$)
- ϖ_p is the weighted magnetic field folded with muon distribution
- All other values from Committee on Data for Science and Technology (CODATA), uncertainty < 25 ppb
 - E.g. muon-to-electron mass ratio by muonium hyperfine structure experiment
- Final measurements done in three steps
 - Inject muons into a ring with uniform magnetic field
 - Measure muon frequency difference ω_a
 - Measure proton precession frequency ω_p and muon distribution
 - Blind analyses: measurements and correction factors done *independently* before final answer


Detector System

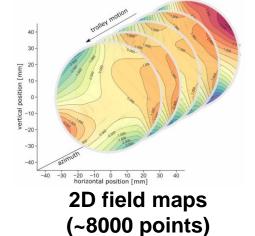
- 15 meter wide dipole superconducting magnet
- Inflector, kickers, quadrupoles, collimators for beam insertion
- 386 NMR probes
- Moving trolley with 17 probes
- 24 calorimeters
- Laser calibration system
- 2 tracker stations
- Auxiliary detectors: T0, IBMs, Fiber harps

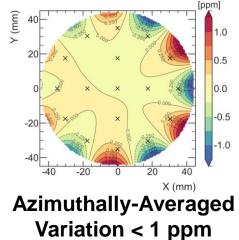

9 PB of Raw Data!

Data Collection

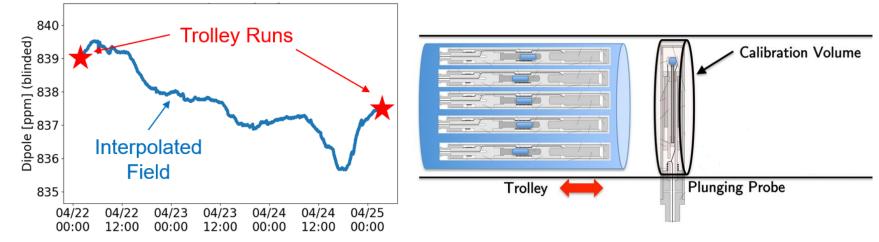
- ✓ Apr. 2021: Run-1 Result (2018 data) Stat. 434ppb
- ✓ Aug. 2023: Run-2/3 Result (2019-20 data) Stat. 201ppb
- ✓ Circa 2025: Run-4/5/6 Result (2021-23 data) Stat. ~100ppb
- Run-2/3 ~ 4 times larger than Run-1
- Run-4/5/6 ~ 4 times larger than Run-2/3

ω_a Measurement

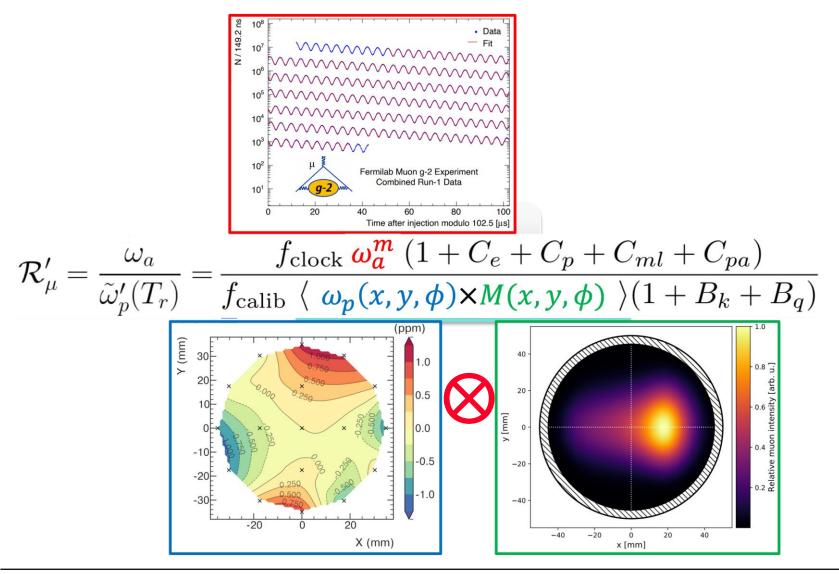

- Energetic e+ oscillates as µ+ spin direction aligns or antialigns with momentum direction
- Count e+ hitting calos above threshold (or weight the hits)
- Extract the oscillation frequency ω_a via fitting time spectrum

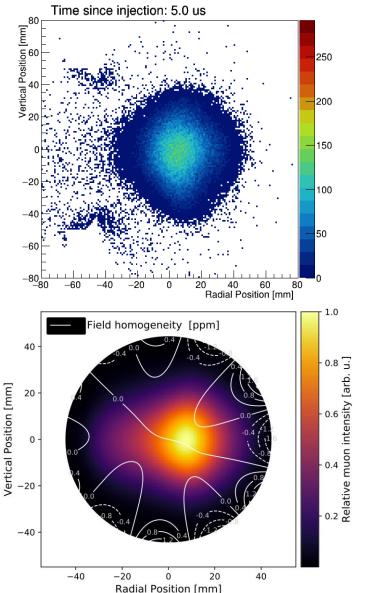

ω_p Measurement

In-vacuum NMR trolley maps field every few days

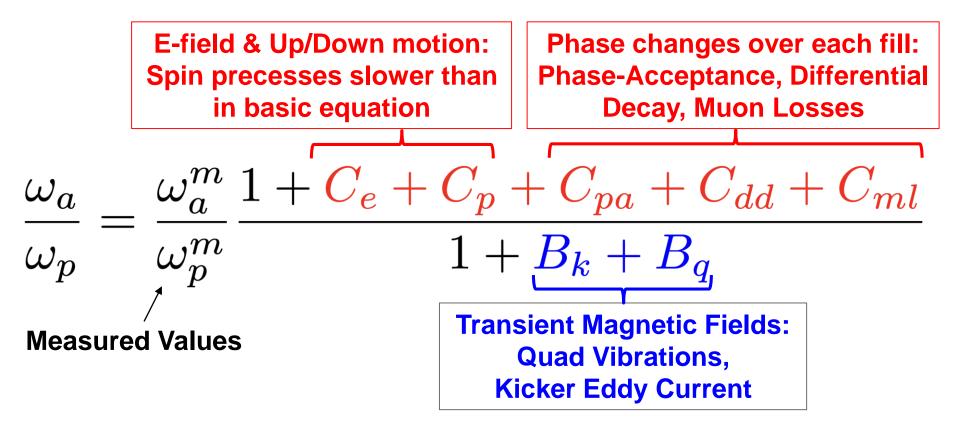


17 petroleum jelly NMR probes

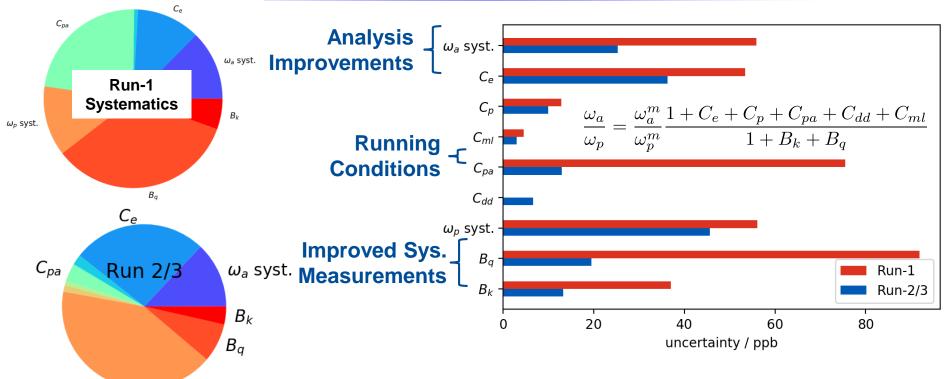



- 378 fixed probes monitor field during muon storage at 72 locations
- Cross-calibrate using a cylindrical plunging H₂O probe

Full Measurement with Corrections


Muon Distribution Measurement

- Trackers can measure beam oscillations directly
 - Beam-dynamics corrections
 - Tuning simulations
 - Optimizing experiment running conditions
- Use muon distribution to weight field maps by where the muons live



Full Measurement with Corrections

- Total correction 622 ppb, dominated by E-field & Pitch
- Corrections are small, but dominated Run-1 systematics
- Ultimate goal of precision experiment:
 - Correction uncertainties understood and minimized

Improving Systematic Uncertainties

 ω_p syst.

Major improvements came from:

- Repaired damaged resistors: improved beam storage, C_{pa} 75ppb→13ppb
- Stronger kicker: centered muon distribution, C_e 53ppb→32ppb Run5 Quad-RF reduce CBO
- Beam effects: smaller oscillations, $\omega_{a \ cbo}$ 40ppb \rightarrow 20ppb
- Quad vibrations: more measurements, B_q 92ppb \rightarrow 20ppb
- Pileup background: improved reconstruction/algorithm, ω_{a_p} 30ppb \rightarrow 7ppb

L.Li, Outlook for Muon g-2 Experiment @ FPCP 2024, Bangkok, Thailand

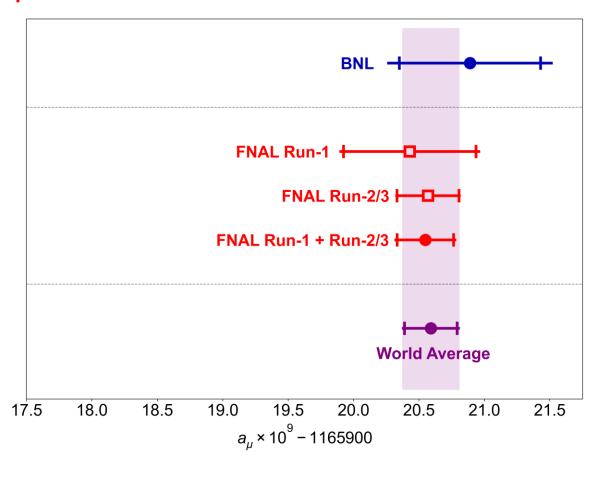
Run4+ continuous

measurements

Improving Systematic Uncertainties

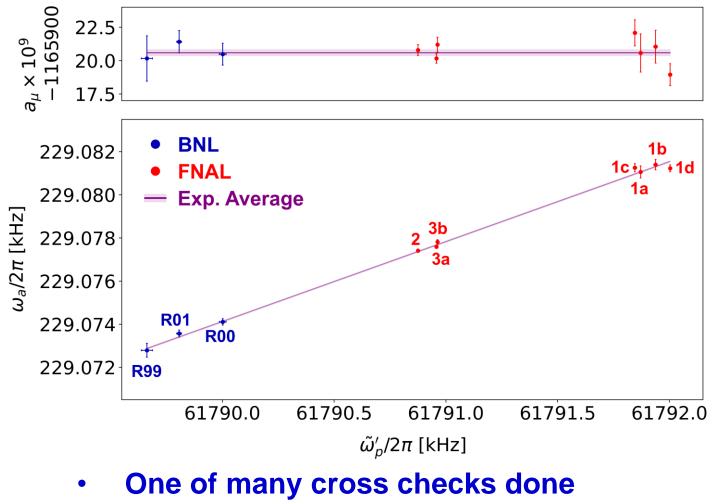
Quantity	Correction [ppb]	Uncertainty [ppb]
$ \begin{array}{c} \overline{\omega_a^m \text{ (statistical)}} \\ \overline{\omega_a^m \text{ (systematic)}} \end{array} $		201 20
$\overline{C_e}$	451	32
$C_p \\ C_{pa}$	$\begin{array}{c} 170 \\ -27 \end{array}$	$\begin{array}{c}10\\13\end{array}$
$egin{array}{c} C_{dd} \ C_{ml} \end{array}$	$^{-15}_{0}$	17
$\frac{G_{mi}}{f_{\text{calib}}\langle \omega_p'(\vec{r}) \times M(\vec{r}) \rangle}$		46
$egin{array}{c} B_k \ B_q \end{array}$	-21 -21	$\begin{array}{c}13\\20\end{array}$
$\mu_p'(34.7^\circ)/\mu_e$	_	11
${m_\mu/m_e\over g_e/2}$	_	$22 \\ 0$
Total systematic	_	70
Total external parameters Totals	622	215

Total uncertainty: 215 ppb

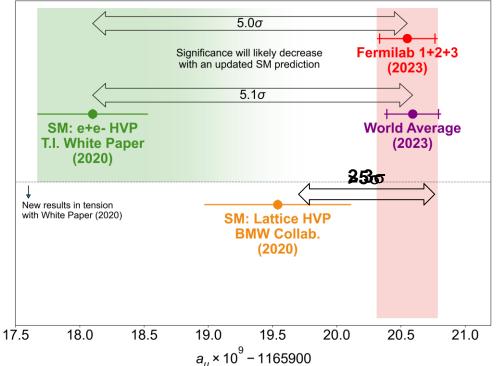

[ppb]	Run-1	Run-2/3	Ratio
Stat.	434	201	2.2
Syst.	157	70	2.2

- Near-equal improvement
- Still statistically dominated

Total systematic uncertainty: 70 ppb
Surpasses the proposal goal of 100 ppb!


Run2/3 Result & New World Average

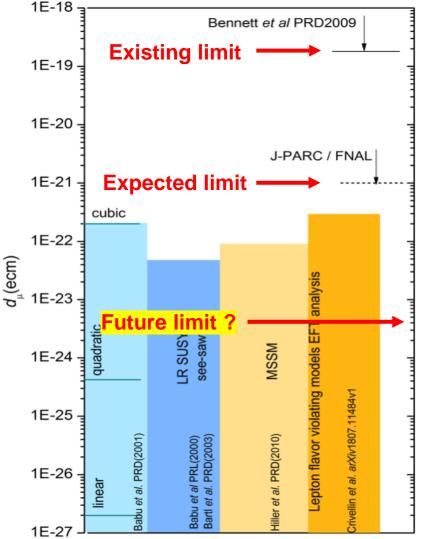
a_µ(FNAL) = 0.00 116 592 055(24) [203 ppb]


a_µ(Exp) = 0.00 116 592 059(22) [190 ppb]

Data Consistency Check

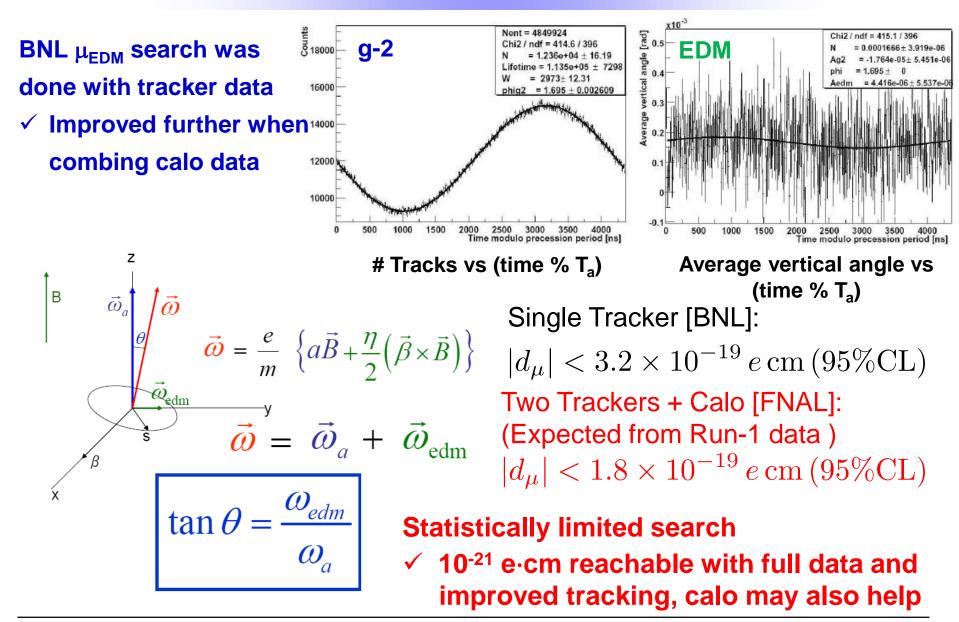
- Cross checked with BNL results as well
- Datasets taken with slightly different fields

Experiment vs. Theory Saga



All the more reason to further improve precision measurements!

- ✓ Round 3 or more are very welcome
- ✓ New physics potential beyond g-2

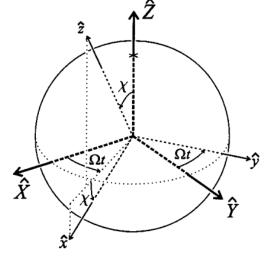

- Expect to solve theoretical ambiguity in the next 1-2 years
- Muon g-2 Theory Initiative latest summary
 - <u>https://muon-gm2-</u> theory.illinois.edu/
- More results from BaBar, KLOE, SND, BESIII, Belle II to come
- a_μ(Exp) Run1-6 uncertainty:
 - < 120ppb, 50% reduction
- a_{μ} (SM) 2025 uncertainty:
 - < 50% reduction possible?</p>

Muon Electric Dipole Moment (EDM)

- SM prediction for muon EDM is almost 0: $d_{\mu} < 10^{-38} e \cdot cm$
- Unambiguous new physics signal
- Muon is the best option
 - Direct measurement
 - Free of nuclear / molecular effects
- Note that $d_e \sim 10^{-29} e \cdot cm$
 - Current best result $d_{\mu} \sim 10^{-19} \, e \cdot cm$
 - 10-10² improvement expected
 - Still need BSM effect >> $(m_{\mu}/m_{e})^{2}$
 - **Big discovery potential**

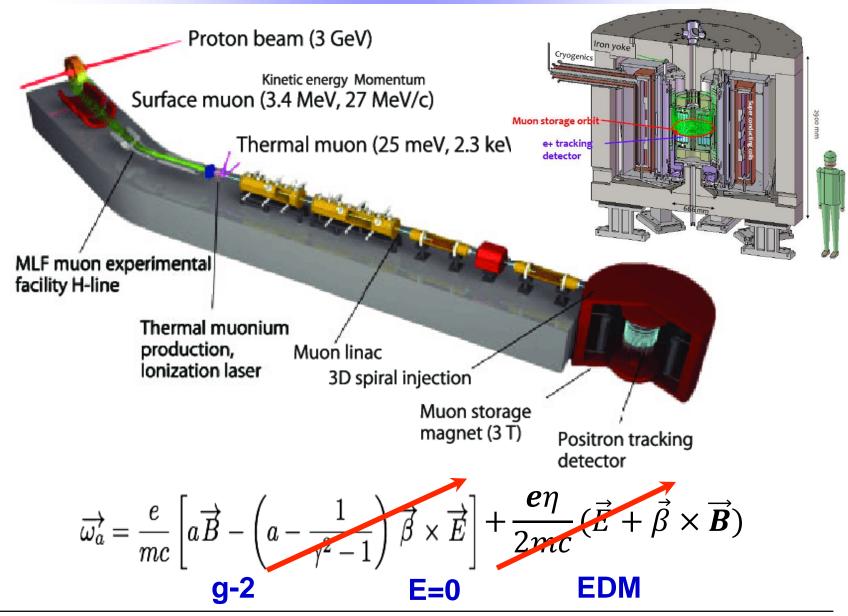
Muon Electric Dipole Moment (EDM)

CPT and Lorentz Invariance Violation


Standard Model Extension (SME) Allows for CPT/LV

Muon anomalous frequency would be changed by CPT/LV terms

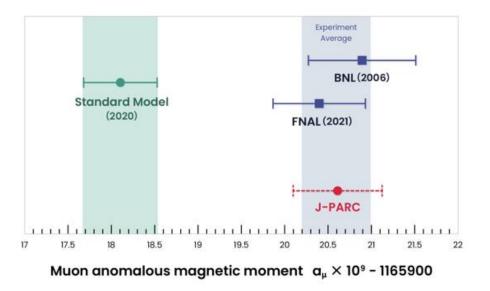
 $L' = -a_{\kappa}\bar{\psi}\gamma^{\kappa}\psi - b_{\kappa}\bar{\psi}\gamma_{5}\gamma^{\kappa}\psi - \frac{1}{2}H_{\kappa\lambda}\bar{\psi}\sigma^{\kappa\lambda}\psi \qquad \delta\omega_{a}^{\mu^{\pm}} \approx 2\check{b}_{Z}^{\mu^{\pm}}\cos\chi + 2(\check{b}_{X}^{\mu^{\pm}}\cos\Omega t + \check{b}_{Y}^{\mu^{\pm}}\sin\Omega t)\sin\chi + \frac{1}{2}ic_{\kappa\lambda}\bar{\psi}\gamma^{\kappa}\bar{D}^{\lambda}\psi + \frac{1}{2}id_{\kappa\lambda}\bar{\psi}\gamma_{5}\gamma^{\kappa}\bar{D}^{\lambda}\psi, \qquad \check{b}_{J}^{\mu^{\pm}} \equiv \pm \frac{b_{J}}{\gamma} + m_{\mu}d_{J0} + \frac{1}{2}\varepsilon_{JKL}H_{KL} \qquad (J = X, Y, Z)$


 a_k , b_k are CPT- odd; others are CPT- even $\Omega = 2\pi/T_{Earth}$; $\chi = 90^\circ - latitude$

- Sidereal oscillation in $\mathcal{R} = \omega_a / \widetilde{\omega}'_p$
 - ω_a proportional to magnetic field
- Two kinds of CPT/LV signals
 - Difference between average R_{μ^+} and R_{μ^-}
 - Sidereal modulations in R_{μ^+} and R_{μ^-}
- Previous BNL result put sharp bound on CPT
 - CPT/LV coefficients < 1.4 X 10⁻²⁴ GeV
 - Dimensionless FOM < ~10⁻²³
- Improvement from FNL
 - Run-2 data < 1.2 x 10⁻²⁴ GeV
 - Run-2/3 data < O(10⁻²⁵) GeV (expected)

Nonrotating Celestial Equatorial Frame $(\widehat{X}, \widehat{Y}, \widehat{Z})$

J-PARC g-2/EDM


J-PARC g-2/EDM

Comparison of various parameters for the Fermilab and J-PARC (g-2) Experiments

		(0)
Parameter	Fermilab E989	J-PARC E24
Statistical goal	100 ppb	$400\mathrm{ppb}$
Magnetic field	$1.45\mathrm{T}$	$3.0\mathrm{T}$
Radius	$711\mathrm{cm}$	$33.3\mathrm{cm}$
Cyclotron period	$149.1\mathrm{ns}$	$7.4\mathrm{ns}$
Precession frequency, ω_a	$1.43\mathrm{MHz}$	$2.96\mathrm{MHz}$
Lifetime, $\gamma \tau_{\mu}$	$64.4\mu{ m s}$	$6.6\mu{ m s}$
Typical asymmetry, A	0.4	0.4
Beam polarization	0.97	0.50
Events in final fit	$1.8 imes 10^{11}$	$8.1 imes 10^{11}$

No magic momentum!

- No strong focusing
- Super-low emittance muon beam
- Compact storage ring
- Full tracking detector

Aim to have comparable precision with FNAL Run-1 result

- Statistical uncertainty dominated
- $\delta \omega_a = 0.45 \text{ ppm}, \delta \omega_{a_{sys}} < 0.1 \text{ ppm}$
- $\delta EDM = 1.5 \cdot 10^{-21} e \cdot cm^{-21}$

TDR: 2017Next talk fromKEK approval: 2021Yoshioka-san!Data taking: 2028

Conclusion and Outlook

✓ Most precise Muon g-2 experiment result so far: 0.20ppm

- ✓ Final release expected in 2025
 - ✓ Expect significant improvements from both experiment and theory side
 - Discovery potential with improved precisions
- ✓ New physics potential in many aspects
 - ✓ Test BSM models, Muon EDM, CPT/LV and Dark Matter search
- ✓ J-PARC Muon g-2/EDM experiment expected to take data in ca. 2028
- ✓ More exciting results from Muon g-2 underway, stay tuned!

Backup

Muon g-2 Collaboration

US Universities

- Boston
- Cornell
- UIUC
- James Madison
- Kentucky
- **Massachusetts**
- Michigan
- **Michigan State**
- Mississippi
- North Central College
- Northern Illinois
- Regis
- Virginia
- Washington

US National Labs

- Argonne
- **Brookhaven**
- Fermilab

181 collaborators 33 Institutions 7 countries

China

Shanghai Jiao Tong

Germany

Dresden

Italy

- Frascati
- Molise
- Pisa
- **Roma Tor Vergata**
- Trieste
- Udine

Korea

 \searrow

 \mathbb{Z}

CAPP/ISB KAIST

Russia

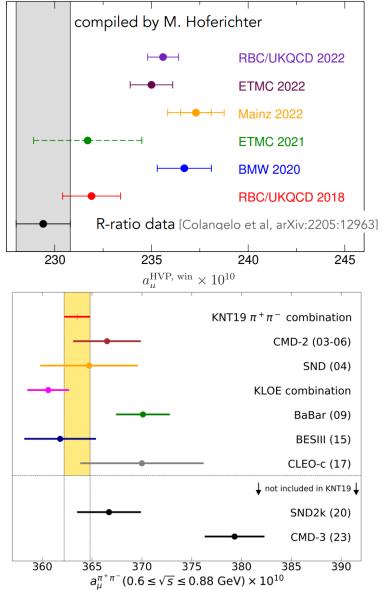
- Budker/Novosibirsk
- JINR Dubna

United Kingdom

- Lancaster/Cockcroft
- Liverpool
- Manchester
- **University College** London

Muon g-2 Collaboration

7 countries, 33 institutions, 181 collaborators



Muon g-2 Collaboration Meeting @ Elba May 2019

Hadronic Vacuum Polarization Update

- LQCD Intermediate window: BMW 2020 claimed 0.8% precision, closer to experimental value but 2.1σ with datadriven HVP
- Need full LQCD HVP calculations for all windows
 - Data-driven results from SND2k and CMD-3 since 2020 White Paper
- SND2k agrees with 2020 results
- CMD-3 deviates from all others $>3\sigma$
- New paper from Babar
 - Phys. Rev. D 108, L111103 (2023)
 Possible explanation for tensions with
 other experiments
- MuonE: $a_{\mu_{Had}}$ from experiment!