22nd Conference on Flavor Physics and CPViolation (FPCP 2024) May 30, 2024 @ Chulalongkorn University

Theoretical progress in **CP** violation in *D*-meson system

m

IN THE OWNER WHEN THE PARTY NAMES IN COLUMN

and have been been been

A LOOM IN THE RAY AND DAY AND AND

a line provi tirra. 1

m

Cheng-Wei Chiang National Taiwan University National Center for Theoretical Sciences

The Acclaimed Dark Horse

- CP violation in charm decays is considered as the dark horse.
 - "... charm's SM phenomenology provides us with a dual opportunity, namely to
 - (1) probe our quantitative understanding of QCD's non-perturbative dynamics thus calibrating our theoretical tools for describing B decays;
 - (2) perform almost 'zero-background' searches for New Physics, mainly in the area of CP violation."

The Acclaimed Dark Horse

- CP violation in charm decays is considered as the dark horse.
 - "... charm's SM phenomenology provides us with a dual opportunity, namely to
 - (1) probe our quantitative understanding of QCD's non-perturbative dynamics thus calibrating our theoretical tools for describing B decays;
 - (2) perform almost 'zero-background' searches for New Physics, mainly in the area of CP violation."
- Have we fully understood these two aspects?

The Acclaimed Dark Horse

- CP violation in charm decays is considered as the dark horse.
 - "... charm's SM phenomenology provides us with a dual opportunity, namely to
 - (1) probe our quantitative understanding of QCD's non-perturbative dynamics thus calibrating our theoretical tools for describing B decays;
 - (2) perform almost 'zero-background' searches for New Physics, mainly in the area of CP violation."
- Have we fully understood these two aspects?

Importance of Hadronic D Meson Decays

- two-body modes.
 - \rightarrow importance of hadronic decay modes in understanding the D meson

• D mesons decay dominantly (~84%) into hadronic final states, 3/4 of which are

Peculiarities of Charm System

Peculiarities of Charm System

- $\Lambda_{\rm QCD}/m_c \sim 0.3$
 - bad heavy quark expansion higher power corrections
- $\alpha_s(m_c) \sim 0.3$ bad PQCD expansion higher-order perturbations and/ or nonperturbative effects
- Many nearby resonances final-state rescattering effects

Peculiarities of Charm System

- There is no satisfactory effective theory that allows us to study the charm system reliably, particularly for the hadronic decays.
- Common approaches: symmetry-based and perturbation-based, assisted with lattice inputs and sometimes phenomenological models.

- $\Lambda_{\rm QCD}/m_c \sim 0.3$
 - bad heavy quark expansion higher power corrections
- $\alpha_{\rm S}(m_c) \sim 0.3$ bad PQCD expansion higher-order perturbations and/ or nonperturbative effects
- Many nearby resonances final-state rescattering effects

Cabibbo Hierarchy in Hadronic *D* **Decays**

- Cabibbo-favored (CF): involving $V_{cs}^* V_{ud} \sim 1 - \lambda^2 \sim 0.95$
- Singly Cabibbo-suppressed (SCS): involving $V_{cd}^* V_{ud}$ or $V_{cs}^* V_{us} \sim \lambda \sim 0.22$
- Doubly Cabibbo-suppressed (DCS): involving $V_{cd}^* V_{us} \sim \lambda^2 \sim 0.05$

$$Amp = V_{cd}^* V_{ud} (trees + peng)$$

$$I$$
tiny relative weak phase between

SCS decays can involve diagrams with different CKM phases and have CPA's:

 $guins) + V_{cs}^* V_{us} (trees + penguins)$ (after using unitarity identity) en the two combinations

GIM Mechanism

• In the SM, the CKM matrix takes the hierarchical form:

$$V_{\rm CKM} = \begin{pmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{pmatrix} \simeq \begin{pmatrix} A & A & A & A \\ A & A & A & A \end{pmatrix}$$

where the unitarity condition for the upper two rows (relevant for charm physics)

$$\lambda_d + \lambda_s + \lambda_b = 0$$

order $(10^{-10}, 10^{-8}, 10^{-5})$ for the d, s, and b quark, respectively, resulting in a very effective Glashow-Iliopoulos-Maiani (GIM) cancellation.

Cabibbo 1963; Kobayashi, Maskawa 1973 Wolfenstein 1983

(where
$$\lambda_q \equiv V_{cq}^* V_{uq}$$
)

renders an extremely squashed unitarity triangle (roughly $1:1:10^{-3}$ sides).

• The loop function for the $c \to u$ penguin amplitude $\sim \frac{1}{(4\pi)^2} \frac{m_q^2}{m_W^2}$, which is of order $(10^{-10} \ 10^{-8} \ 10^{-5})$

CP Violation in SCS Decays

Typically, direct CPA's in SCS decays are given by

$$a_{\rm CP}^{\rm dir} = \frac{2{\rm Im}(V_{cd}^* V_{ud} V_{cs} V_{us}^*)}{|V_{cd}^* V_{ud}|^2} \left|\frac{A_2}{A_1}\right| \sin\delta = 2\left|\frac{V_{cb}^* V_{ub}}{V_{cd}^* V_{ud}}\right| \sin\gamma \left|\frac{A_2}{A_1}\right| \sin\delta \sim 10^{-3} \left|\frac{A_2}{A_1}\right| \sin\delta$$

in general) associated with different CKM factors.

- With $|A_2/A_1| \leq 1$, the CPA is at most $\mathcal{O}(10^{-3})$. new physics, if measured to be more sizable current data at the borderline...

relative strong phase

weak phase of V_{ub}^* where A_1 and A_2 generically denote amplitudes (including tree and penguin types)

• The estimates of $|A_2/A_1|$ differ between perturbative and symmetry approaches.

Symmetry-based Approach — Topological Diagrams

• Diagrams for 2-body hadronic D meson decays can be classified more intuitively according to flavor topology

(a) Tcolor-allowed tree

(b) C

color-suppressed tree

(c) P, P_{EW}^C QCD penguin color-suppressed EW penguin

(d) S, $P_{\rm EW}$ singlet penguin EW penguin

Zeppenfeld 1981 Chau and Cheng 1986, 1987, 1991 Savage and Wise 1989 into the tree- and loop-types, universal in flavor SU(3) limit: Grinstein and Lebed 1996 Gronau et. al. 1994, 1995, 1995

Iree-type

(f) Aannihilation

(e) E exchange

 $(g) PE, PE_{EW}$ penguin exchange EW penguin exchange

(h) PA, PA_{EW} penguin annihilation EW penguin annihilation

From Partial Width to Decay Amplitude

• Partial decay widths of $D \rightarrow PP$ and VP decays are related to their decay amplitudes as follows: magnitude of 3-momentum of final-state particle $\Gamma(D \to PP) = \frac{p_c}{8\pi m_D^2} |\mathcal{M}|^2$

- Flavor SU(3) breaking due to phase space difference is thus removed.
- In the symmetry limit, flavor SU(3) is assumed at the amplitude level (decay strength and strong phase), where the decay amplitude \mathcal{M} is a linear combination of the topological amplitudes multiplied by the corresponding CKM factors.

$$\Gamma(D \to VP) = \frac{\frac{p_c^3}{8\pi m_V^2}}{|\mathcal{M}|^2}$$
due to polarization sum

Symmetry-based Approach

- As far as BR's are concerned, penguin diagrams are negligible because of the GIM mechanism ($V_{cd}^*V_{ud} = -V_{cs}^*V_{us}$ and $V_{cb}^*V_{ub} \sim A^2\lambda^5$). tree-type diagrams are dominant in determining the BR's
- Perform a χ^2 fit to the BR's of all CF modes, extracting magnitudes and strong phases (up to discrete ambiguities) of all the topological amplitudes.
- Make flavor SU(3) symmetry-breaking corrections (mostly in the magnitude) as demanded by data.
- Include penguin amplitudes, particularly certain diagrams that could be enhanced by final-state rescattering, to induce large direct CPA's.
- Using the extracted information, make predictions of BR's and CPA's for SCS and DCS modes.

testable by current/future data

Tree-level Amplitudes and Long-distance Effects

- A fit to the BR's of CF *PP* modes gives (in units of 10^{-6}):
 - $T = 3.113 \pm 0.011$ real by convention

phases signify that amplitudes other than T all receive significant nonfactorizable, long-distance FSI's more on this later

- $-E = (1.48 \pm 0.04)e^{i(120.9 \pm 0.4)^{\circ}}$
- $-A = (0.55 \pm 0.03)e^{i(23+7)^{\circ}}$
- For example, the effective Wilson coefficients for the T and Camplitudes are given by:

extracted from data — $a_1(\bar{K}\pi) \approx 1.22$ and $a_2(\bar{K}\pi) \approx 0.82e^{-i(151)^\circ}$ naive factorization —

• Both C and E can be enhanced by rescattering from T.

such magnitudes and strong — $C = (2.767 \pm 0.029)e^{-i(151.3\pm0.3)^{\circ}}$

Cheng and CWC 2019 with slight updates in Cheng and CWC 2024

>large strong phases

cf. B decays

 $a_1 \simeq 1.09 \text{ and } a_2 \simeq -0.11$

The $D \rightarrow \pi^+ \pi^-$ and $K^+ K^-$ Decays

These two SCS decay modes are closely related:

$$\Delta P = (P + PE + I)$$

$$\lambda_q = V_{cq}^* V_{uq}$$

opposite. In sum rule: the sum of individual CPA's vanishes

$$+ \Delta P)_{\pi\pi} - \frac{1}{2} \lambda_b (T + E + \Sigma P)_{\pi\pi}$$

$$P \quad [SU(3) \text{ limit}]$$

$$- \Delta P)_{KK} - \frac{1}{2} \lambda_b (T + E + \Sigma P)_{KK}$$

$$P \quad [SU(3) \text{ limit}]$$

where the penguin amplitudes can be safely ignored in BR calculations, and $\Sigma P = (P + PE + PA)_d + (P + PE + PA)_s - \text{sum of } d\text{-and } s\text{-penguins}$ $PA)_d - (P + PE + PA)_s - \frac{\text{difference between}}{d - \text{ and } s - \text{ penguins}}$

the quark involved in the penguin loop

• In the SU(3) limit, their amplitudes are the same in magnitude and their CPA's are

Improved Sum Rule and Data

- In the U-spin limit, there is an improved sum rule:
 - while data show that it is broken:

• The latest HFLAV data,

also supports the same-sign CPA's.

$\frac{a_{\rm CP}^{\rm dir}\left(D^0 \to \pi^+\pi^-\right)}{a_{\rm CP}^{\rm dir}\left(D^0 \to K^+K^-\right)} = -\frac{\Gamma(D^0 \to K^+K^-)}{\Gamma(D^0 \to \pi^+\pi^-)} < \begin{array}{c} \text{Grossman, Kagan, Nir 2007} \\ \text{Pirtskhalava, Uttayarat 2012} \\ \text{Grossman, Robinson 2013} \end{array}$

$3.01^{+0.95}_{-5.95} \neq -2.81 \pm 0.06!$

$a_{\rm CP}^{\rm dir} (D^0 \to \pi^+ \pi^-) = (2.30 \pm 0.59) \times 10^{-3}$

 $a_{\rm CP}^{\rm dir} (D^0 \to K^+ K^-) = (0.44 \pm 0.54) \times 10^{-3}$

HFLAV 2023

• Such a disagreement is beyond the naive SU(3) symmetry breaking of ~30%.

- identical decay strength, but with different phase spaces. \Rightarrow expect $\mathscr{B}(\pi^+\pi^-) > \mathscr{B}(K^+K^-)$
- Empirically, however, the ratio of their decay rates $\frac{\Gamma(K^+)}{\Gamma(\pi^+)}$

is noticeably larger than 1 in the SU(3) limit (neglecting phase space effects).

amplitude of the order of

 m_s

• For a long time, the BR's of $D \to \pi^+ \pi^-$, $K^+ K^-$ are known to deviate significantly from naive expectations: with negligible penguin amplitudes, the two modes have

$$\left(\frac{K^{-}}{\pi^{-}}\right) \simeq 2.8$$

• It has been argued that such a ratio can be explained by SU(3) breaking on the

$$\frac{m_s - m_d}{M_{
m QCD}} \sim 0.3$$
 Schacht 2

• SU(3) breaking in T:

however, not the complete story

- SU(3) breaking in T: $\frac{T(K^+K^-)}{T(\pi^+\pi^-)} \simeq \frac{f_F}{f_{\star}}$ however, not the complete story
- SU(3) breaking in E: vanishing in SU(3) limit $A(D \rightarrow K^0 \overline{K^0}) = \lambda_d (E_d + 2PA_d) + \lambda_d$

 \rightarrow needs different E_d and E_s to explain the nonzero rate: $\begin{cases} I: & E_d = 1.10e^{i15.1} \\ II: & E_d = 1.10e^{i15.1} \end{cases}$

$$\frac{f_K}{f_\pi} \frac{F_+^{DK}(m_K^2)}{F_+^{D\pi}(m_\pi^2)} \simeq 1.32$$

$$E_d + 2PA_d) + \lambda_s \left(E_s + 2PA_s \right)$$

diagrams of $c\overline{u} \to q\overline{q}$ (q = d, s)

$${}^{1^{\circ}}E, \quad E_s = 0.62e^{-i19.7^{\circ}}E$$

$${}^{1^{\circ}}E, \quad E_s = 1.42e^{-i13.5^{\circ}}E$$

_____two possible solutions for symmetry breaking

- SU(3) breaking in T: $\frac{T(K^+K^-)}{T(\pi^+\pi^-)} \simeq \frac{f_F}{f_c}$ however, not the complete story
- SU(3) breaking in E: vanishing in SU(3) limit $A(D \rightarrow K^0 \overline{K^0}) = \lambda_d (E_d + 2PA_d) + \lambda_c$

- Agglutination of these effects leads to apparently large SU(3) breaking in the observed rates of K^+K^- , $\pi^+\pi^-$, $\pi^0\pi^0$ and $K^0\overline{K^0}$.

$$\frac{f_K}{f_\pi} \frac{F_+^{DK}(m_K^2)}{F_+^{D\pi}(m_\pi^2)} \simeq 1.32$$

$$E_d + 2PA_d) + \lambda_s \left(E_s + 2PA_s \right)$$

diagrams of $c\overline{u} \to q\overline{q}$ (q = d, s)

$$\begin{array}{ll} {}^{1}{}^{\circ}E, & E_s = 0.62e^{-i19.7}{}^{\circ}E \\ {}^{1}{}^{\circ}E, & E_s = 1.42e^{-i13.5}{}^{\circ}E \end{array} \begin{array}{ll} \mbox{two possible soluti} \\ \mbox{for symmetry brea} \end{array}$$

Results

• Our fit results are (in units of 10^{-3})

Decay mode	$\pi^+\pi^-$	
$\mathcal{B}_{\mathrm{SU}(3)}$	2.28 ± 0.02	1.
$\mathcal{B}_{SU(3)}$	1.47 ± 0.02	0.
$\mathcal{B}_{ ext{exp}}$	1.455 ± 0.024	0.8

approach gives

$$\mathcal{B}(\pi^{+}\pi^{-})\big|_{\text{LCSR}} = (1.40^{+1.53}_{-1.06}) \times 10^{-3}$$

$$\mathcal{B}(K^{+}K^{-})\big|_{\text{LCSR}} = (3.67^{+3.90}_{-2.69}) \times 10^{-3}$$
Lenz, Piscopo, Rusov 2

2024 also in agreement with data, though with large theory uncertainties coming from conservative estimates of missing contributions. • The branching ratio puzzle can be resolved in either approach.

Cheng, CWC 2019

• With naive QCDF and tree-level matrix elements using LCSR, the perturbation

Tree-level CPV

- the interference between T and C, C and E, or even between E's.
- As an example, $A(D \to K^0 K^{\overline{0}}) = \lambda_d E_d + \lambda_s E_s$ (vanishing in the SU(3) limit) when neglecting the PA amplitudes, leading to the prediction

$$\begin{aligned} a_{\rm CP}^{\rm dir}(K_S K_S) &= \frac{2 \operatorname{Im} \left(\lambda_d \lambda_s^*\right)}{\left|\lambda_d\right|^2} \frac{\operatorname{Im} \left(E_d^* E_s\right)}{\left|E_d - E_s\right|^2} = 1.3 \times 10^{-3} \frac{\left|E_d E_s\right|}{\left|E_d - E_s\right|^2} \sin \delta_{ds} \\ &= \begin{cases} -1.05 \times 10^{-3} \\ -1.99 \times 10^{-3} \end{cases} \stackrel{\text{from the two possible solutions of } E_{d,s}; \\ -\text{a precise measurement of it will resolve the ambiguity} \end{cases} \end{aligned}$$

which are virtually unchanged when PA contributions are also included.

- In contrast, the factorization-assisted topological-amplitude (FAT) approach predicts 1.11×10^{-3} , opposite in sign. Li, Lü, Yu 2012
- Latest HFLAV gives $a_{CP}^{dir}(K_S K_S) = -0.019 \pm 0.010$.

• Direct CPA's in hadronic charm decays can occur even at the tree level, through Chau, Cheng 1984 Cheng, CWC 2012

the ambiguity

HFLAV 2023

Penguin-induced CPV

CPA arises from the interference between tree and penguin amplitudes

$$\Delta a_{\rm CP}^{\rm dir} = -1.30 \times 10^{-3} \left(\left| \frac{P_d + PE_d + PA_d}{T + E - \Delta P} \right|_{KK} \sin \delta_{KK} + \left| \frac{P_s + PE_s + PA_s}{T + E + \Delta P} \right|_{\pi\pi} \sin \delta_{KK} \right) \right)$$

negligible For the QCD penguin amplitudes, people employ QCDF, pQCD and LCSR: $-i150^{\circ}$ $(P \setminus QCDF)$

$$\left(\overline{T}\right)_{\pi\pi} \approx 0.23e^{-i100}$$
$$\left(\frac{P}{T}\right)_{\pi\pi}^{pQCD} \approx 0.30e^{i110^{\circ}}$$
a factor of ~3
smaller than above
$$\left|\frac{P}{T}\right|_{\pi\pi}^{LCSR} = 0.089^{+0.042}_{-0.037}$$

showing some difference between LCSR and QCD-inspired approaches.

• Direct CPV does not occur at the tree level in $D^0 \to K^+ K^-$ and $D^0 \to \pi^+ \pi^-$.

strong phases of the numerator relative to the denominator (D) QCDF

$$\left(\frac{P}{T}\right)_{KK} \approx 0.22 e^{-i150^\circ}$$
 Cheng, CWC 201

$$\left(rac{P}{T}
ight)_{KK}^{
m pQCD}pprox 0.24 e^{i110^\circ}$$
Li, Lü, Yu 20

$$\left|\frac{P}{T}\right|_{KK}^{\text{LCSR}} = 0.066^{+0.031}_{-0.029} \quad \begin{array}{c} \text{Khodjamirian, Petrov 20}\\ \text{Lenz, Piscopo, Rusov 20} \end{array}$$

Estimates of Δa_{CP}^{dir} Without FSI's

- The CPA difference is measured to be
- one obtains an upper bound of

 $|\Delta a_{CP}^{dir}|$

6 times smaller than the above measurement. violation of quark-hadron duality used in the calculation is hard to estimate

Using QCDF for penguin amplitudes, we also have

after further including PE and PA amplitudes, making the penguin strong phase even closer to 180°.

 $\Delta a_{\rm CP}^{\rm dir} |_{\rm exp} = (-15.7 \pm 2.9) \times 10^{-4}$ LHCb 2019

• Taking the above-mentioned |P/T| ratios from LCSR and varying strong phases,

$$\leq 2.4 imes 10^{-4}$$
 Lenz, Piscopo, Rusov 2

 $|\Delta a_{\rm CP}^{\rm dir}| \sim \mathcal{O}(10^{-4})$ Cheng, CWC 2019

Final-State Interactions

- An isospin amplitude analysis incorporates nearby scalar resonances of $f_0(1710)$ and/or $f_0(1790)$ claims to be able to explain the Δa_{CP}^{dir} data.
 - need more precise experimental information on the BR's of such scalars to KK and $\pi\pi$ to verify the dynamical mechanism
- Although short-distance *PE* and *PA* amplitudes are negligibly small ($|PE/T| \sim 0.04$ and $|PA/T| \sim 0.02$), large long-distance contributions to P + PE can possibly arise from $D^0 \rightarrow K^+ K^-$ followed by a resonance-like final-state interaction (FSI) rescattering.
- phase. \blacksquare take $(P + PE)_{d.s}^{\text{LD}} \approx (1.48 \pm 0.30)e^{i(120.9 \pm 30.0)^{\circ}}$

• It is thus conceivable to have $(P + PE)^{LD} \sim E$, in both strength and strong

Cheng, CWC 2010 Schacht, Soni 2022

Δa_{CP}^{dir} in Symmetry-based Approach

• Due to mainly the enhancement of (P_{i})

$$\begin{pmatrix} \frac{P_s + PE_s + PA_s + PE_s^{\text{LI}}}{T + E^d + \Delta P} \\ \begin{pmatrix} \frac{P_d + PE_d + PA_d + PE_d^{\text{LD}}}{T + E^s - \Delta P} \end{pmatrix}$$

leading to the prediction $a_{\rm CP}^{\rm dir} (\pi^+ \pi^-) = (0.80 \pm 0)$ $a_{\rm CP}^{\rm dir} (K^+ K^-) = \begin{cases} (-0.33) \\ (-0.44) \end{cases}$ $\Rightarrow \Delta a_{\rm CP}^{\rm dir} = \begin{cases} (-1.14) \\ (-1.25) \end{cases}$

$(E)_{d,s}^{\text{LD}}$, we have	Cheng, CWC 2
$ - \int_{\pi\pi}^{D} = 0.77 e^{i114^{\circ}} $	— closer to 90°
$\int 0.45e^{i11}$	7° solution I
$\int_{KK} - 0.45e^{i11}$	$^{0^{\circ}}$ solution II
t so huge enhancement in comparison with QCDF can be approximately the second	magnitudes alculation
$(0.22) \times 10^{\circ}$	still predict
$3 \pm 0.14) \times 10^{-3}$	Solution I opposite-sign (
$4 \pm 0.12) \times 10^{-3}$	Solution II
$4 \pm 0.26) \times 10^{-3}$	Solution I
$5 \pm 0.25) \times 10^{-3}$	Solution II
21	

2019

has

More About Final-State Interactions

purely within SM, it is derived that

$$\sum_{f=\pi\pi,KK} \left(|\mathcal{A}_{D^{0}\to f}|^{2} - |\mathcal{A}_{\bar{D}^{0}\to f}|^{2} \right) = 0 \quad -\frac{\text{due to CPT invariance for the two-channel scattering}}{\text{the two-channel scattering}}$$

$$a_{CP}^{\text{dir}}(\pi\pi) = -\frac{\Delta a_{CP}^{\text{dir}}\mathcal{B}(D^{0}\to K^{+}K^{-})}{\Sigma\mathcal{B}} = (1.135\pm0.021)\times10^{-3}$$

$$a_{CP}^{\text{dir}}(KK) = \frac{\Delta a_{CP}^{\text{dir}}\mathcal{B}(D^{0}\to\pi^{+}\pi^{-})}{\Sigma\mathcal{B}} = -(0.405\pm0.077)\times10^{-3}$$
where $\sum \mathcal{B} \equiv \mathcal{B}(D^{0}\to K^{+}K^{-}) + \mathcal{B}(D^{0}\to\pi^{+}\pi^{-})$

$$\Delta a_{CP}^{\text{dir}} = (-1.31\pm0.20)\times10^{-3} \quad -\frac{\text{using a particular set of parameter and strong phases}}{-\frac{1}{2}$$

• Based upon general arguments of CPT invariance and considering the S-wave S -matrix for the rescattering of the two coupled channels of $\pi^+\pi^-$ and K^+K^-

Bediaga, Frederico, Magalhães 2023

12 12 12due to CPT invariance for

More About Final-State Interactions

that a full picture should be obtained by employing dispersive relations.

Rescattering effects turn out producing insufficient enhancement for CPA's.

• Although the importance of rescattering effects has been recognized, it is argued

Predictions / Data on BR's / CPA's of SCS PP Decays Cheng, CWC 2019

]	3			
	Mode	ours	\exp	ours	Buccella+ 2019	HFLAV
$D^0 \rightarrow$	$\pi^+\pi^-$	1.47 ± 0.02	1.455 ± 0.024	0.80 ± 0.22	$1.17 \pm 0.20/1.18 \pm 0.20$	2.30 ± 0.59
	$\pi^0\pi^0$	0.82 ± 0.02	0.826 ± 0.025	0.82 ± 0.30	$0.04 \pm 0.09/0.79 \pm 0.10$	-0.3 ± 6.4
	$\pi^0\eta$	0.92 ± 0.02	0.63 ± 0.06	-0.05 ± 0.28		
	$\pi^0\eta^\prime$	1.36 ± 0.03	0.92 ± 0.10	-0.15 ± 0.17		
	$\eta\eta$	1.82 ± 0.04	2.11 ± 0.19	-0.52 ± 0.07		
		2.11 ± 0.04		-0.65 ± 0.07		
	$\eta\eta^\prime$	0.69 ± 0.03	1.01 ± 0.19	0.29 ± 0.21		
		1.63 ± 0.08		0.22 ± 0.15		
	K^+K^-	4.03 ± 0.03	4.08 ± 0.06	-0.33 ± 0.14	$-0.47 \pm 0.08 / -0.46 \pm 0.08$	0.44 ± 0.54
		4.05 ± 0.05		-0.44 ± 0.12		
	$K_S K_S$	0.141 ± 0.007	0.141 ± 0.005	-1.05	$0.43 \pm 0.07/0.38 \pm 0.07$	-19 ± 10
		0.141 ± 0.007		-1.99		
$D^+ \rightarrow$	$\pi^+\pi^0$	0.93 ± 0.02	1.247 ± 0.033	0		
	$\pi^+\eta$	4.08 ± 0.16	3.77 ± 0.09	-0.63 ± 0.23		
	$\pi^+\eta^\prime$	4.69 ± 0.08	4.97 ± 0.19	0.11 ± 0.18		
	K^+K_S	4.25 ± 0.10	3.04 ± 0.09	-0.30 ± 0.18	$-0.40 \pm 0.07 / -0.26 \pm 0.05$	
$D_s^+ \rightarrow$	$\pi^+ K_S$	1.27 ± 0.04	1.22 ± 0.06	0.42 ± 0.24	$-0.40 \pm 0.07 / -0.36 \pm 0.07$	
	$\pi^0 K^+$	0.56 ± 0.02	0.63 ± 0.21	0.91 ± 0.27	$0.48 \pm 0.06 / - 0.03 \pm 0.04$	
	$K^+\eta$	0.86 ± 0.03	1.77 ± 0.35	$ -0.81 \pm 0.08$		
	$K^+\eta'$	1.49 ± 0.08	1.8 ± 0.6	0.07 ± 0.25		all in units of

 10^{-3}

Predictions / Data on BR's / CPA's of SCS PP Decays Cheng, CVC 2019

						Ŭ,
		Ĺ	3		$a_{ m CP}^{ m dir}$	
	Mode	ours	\exp	ours	Buccella+ 2019	HFLAV
$D^0 \rightarrow \pi^+\pi^-$		1.47 ± 0.02	1.455 ± 0.024	0.80 ± 0.22	$1.17 \pm 0.20 / 1.18 \pm 0.20$	2.30 ± 0.59
	$\pi^0\pi^0$	0.82 ± 0.02	0.826 ± 0.025	0.82 ± 0.30	$0.04 \pm 0.09/0.79 \pm 0.10$	-0.3 ± 6.4
	$\pi^0\eta$	0.92 ± 0.02	0.63 ± 0.06	-0.05 ± 0.28		
f interest,	$\pi^0\eta^\prime$	1.36 ± 0.03	0.92 ± 0.10	-0.15 ± 0.17		
iciently lar	ge ηη	1.82 ± 0.04	2.11 ± 0.19	-0.52 ± 0.07		
CPA's.		2.11 ± 0.04		-0.65 ± 0.07		
	$\eta\eta^\prime$	0.69 ± 0.03	1.01 ± 0.19	0.29 ± 0.21		
		1.63 ± 0.08		0.22 ± 0.15		
	K^+K^-	4.03 ± 0.03	4.08 ± 0.06	-0.33 ± 0.14	$-0.47 \pm 0.08 / -0.46 \pm 0.08$	0.44 ± 0.54
		4.05 ± 0.05		-0.44 ± 0.12		
	$K_S K_S$	0.141 ± 0.007	0.141 ± 0.005	-1.05	$0.43 \pm 0.07/0.38 \pm 0.07$	-19 ± 10
		0.141 ± 0.007		-1.99		
$D^+ \rightarrow$	$\pi^+\pi^0$	0.93 ± 0.02	1.247 ± 0.033	0		
	$\pi^+\eta$	4.08 ± 0.16	3.77 ± 0.09	-0.63 ± 0.23		
	$\pi^+\eta^\prime$	4.69 ± 0.08	4.97 ± 0.19	0.11 ± 0.18		
	K^+K_S	4.25 ± 0.10	3.04 ± 0.09	-0.30 ± 0.18	$-0.40 \pm 0.07 / -0.26 \pm 0.05$	
$D_s^+ \to$	$\pi^+ K_S$	1.27 ± 0.04	1.22 ± 0.06	0.42 ± 0.24	$-0.40 \pm 0.07 / -0.36 \pm 0.07$	
	$\pi^0 K^+$	0.56 ± 0.02	0.63 ± 0.21	0.91 ± 0.27	$0.48 \pm 0.06 / - 0.03 \pm 0.04$	
	$K^+\eta$	0.86 ± 0.03	1.77 ± 0.35	-0.81 ± 0.08		
	$K^+\eta'$	1.49 ± 0.08	1.8 ± 0.6	0.07 ± 0.25		all in units of
	$D^{0} \rightarrow$ f interest, ciently lar CPA's. $D^{+} \rightarrow$ $D_{s}^{+} \rightarrow$	$D^{0} \rightarrow \qquad \begin{array}{c} \pi^{+}\pi^{-} \\ \pi^{0}\pi^{0} \\ \pi^{0}\eta \\ \hline \mu^{0} \hline \mu^{0} \\ \hline \mu^{0} \hline \mu^{0} \\ \hline \mu^{0} \hline \mu^{0} \hline \mu^{0} \hline \mu^{0} \hline \mu^{0} \\ \hline \mu^{0} \hline $	$\begin{array}{c cccccc} & & & & & & & & & & & & & & & & $	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $

 10^{-3}

Predictions / Data on BR's / CPA's of SCS PP Decays Cheng, CWC 2019

		Ľ	3			
Mode		ours	\exp	ours	Buccella+ 2019	HFLAV
$D^0 \rightarrow \pi^+\pi^-$		1.47 ± 0.02	1.455 ± 0.024	0.80 ± 0.22	$1.17 \pm 0.20/1.18 \pm 0.20$	2.30 ± 0.59
	$\pi^0\pi^0$	0.82 ± 0.02	0.826 ± 0.025	0.82 ± 0.30	$0.04 \pm 0.09/0.79 \pm 0.10$	-0.3 ± 6.4
	$\pi^0\eta$	0.92 ± 0.02	0.63 ± 0.06	-0.05 ± 0.28		
f interest,	$\pi^0\eta^\prime$	1.36 ± 0.03	0.92 ± 0.10	-0.15 ± 0.17	predict $\Lambda a^{\text{dir}}(K^+)$	$K^{-} - \pi^{+}\pi^{-}$) to
iciently lar	ge ηη	1.82 ± 0.04	2.11 ± 0.19	-0.52 ± 0.07	(1114 ± 0.26)	$(10^{-3})^{-3}$
BR's and CPA's.		2.11 ± 0.04		-0.65 ± 0.07	(-1.14 ± 0.20)	$< 10 $ or $< 10^{-3}$
	$-\eta\eta^\prime$	0.69 ± 0.03	1.01 ± 0.19	0.29 ± 0.21	(-1.25 ± 0.25)	< 10 ⁻⁵
		1.63 ± 0.08		0.22 ± 0.15		
	K^+K^-	4.03 ± 0.03	4.08 ± 0.06	-0.33 ± 0.14	$-0.47 \pm 0.08 / -0.46 \pm 0.08$	0.44 ± 0.54
		4.05 ± 0.05		-0.44 ± 0.12		
	$K_S K_S$	0.141 ± 0.007	0.141 ± 0.005	-1.05	$0.43 \pm 0.07/0.38 \pm 0.07$	-19 ± 10
		0.141 ± 0.007		-1.99		
$D^+ \rightarrow$	$\pi^+\pi^0$	0.93 ± 0.02	1.247 ± 0.033	0		
	$\pi^+\eta$	4.08 ± 0.16	3.77 ± 0.09	-0.63 ± 0.23		
	$\pi^+\eta^\prime$	4.69 ± 0.08	4.97 ± 0.19	0.11 ± 0.18		
	K^+K_S	4.25 ± 0.10	3.04 ± 0.09	-0.30 ± 0.18	$-0.40 \pm 0.07/ - 0.26 \pm 0.05$	
$D_s^+ \to$	$\pi^+ K_S$	1.27 ± 0.04	1.22 ± 0.06	0.42 ± 0.24	$-0.40 \pm 0.07/ - 0.36 \pm 0.07$	
	$\pi^0 K^+$	0.56 ± 0.02	0.63 ± 0.21	0.91 ± 0.27	$0.48 \pm 0.06 / - 0.03 \pm 0.04$	
	$K^+\eta$	0.86 ± 0.03	1.77 ± 0.35	-0.81 ± 0.08		
	$K^+\eta'$	1.49 ± 0.08	1.8 ± 0.6	0.07 ± 0.25		all in units of 1
	$D^{0} \rightarrow$ f interest, ciently lar CPA's. $D^{+} \rightarrow$ $D_{s}^{+} \rightarrow$	$D^{0} \rightarrow \qquad \begin{array}{c} \pi^{+}\pi^{-} \\ \pi^{0}\pi^{0} \\ \pi^{0}\eta \\ \hline \pi^{0}\eta \\ \hline \pi^{0}\eta \\ \hline r \\ ciently large \\ \eta\eta \\ CPA's. \\ \eta\eta' \\ \end{array}$ $K^{+}K^{-} \\ K_{S}K_{S} \\ D^{+} \rightarrow \qquad \begin{array}{c} \pi^{+}\pi^{0} \\ \pi^{+}\eta \\ \pi^{+}\eta' \\ K^{+}K_{S} \\ D^{+}_{s} \rightarrow \qquad \begin{array}{c} \pi^{+}\pi^{0} \\ \pi^{+}\eta' \\ K^{+}K_{S} \\ \pi^{0}K^{+} \\ K^{+}\eta \\ K^{+}\eta' \\ K^{+}\eta' \\ \end{array}$	$\begin{array}{c cccccc} & & & & & & & & & & & & & & & & $	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $

Topological Diagrams for $D \rightarrow VP$ **Decays**

- types of diagrams have no relation a priori and should be distinguished.
 - Less

s significant SU(3) breaking for
$$T_{V,P}$$
 and $C_{P,V}$. For example,

$$\frac{|T_V + E_P|_{\pi^+\rho^-}}{|T_V + E_P|_{K^+K^{*-}}} \simeq 1.08 \qquad \frac{|T_P + E_V|_{\pi^-\rho^+}}{|T_P + E_V|_{K^-K^{*+}}} \simeq 0.91$$
b roughly in phase for small $\mathscr{B}(\pi^+\rho)$ and large $\mathscr{B}(\pi^+\omega)$ of D_s^+ .

- A_{V,P}
- $C_{V,P}$ roughly in D^0 .
 - order to explain nonzero rates of $D^0 \to K^0 \overline{K^{*0}}$ and $\overline{K^0} K^{*0}$.

• In the case of $D \rightarrow VP$ decays, the spectator quark in the D meson may end up in P or V meson in the final state. Though of the same flavor topology, these two

• Analogous to the PP sector, SU(3) breaking is required in the d, s-type $E_{V,P}$ in

Predictions / Data on BR's / CPA's of SCS *VP* **Decays**

			\mathcal{B}			$a_{ m CP}^{ m dir}$	
	Mode	ours	Qin+2014	\exp	ours	Qin+2014	HFLAV
$D^0 \rightarrow$	$\pi^+ ho^-$	5.12 ± 0.29	4.74/4.66	5.15 ± 0.25	0.77 ± 0.22	-0.03	
	$\pi^- ho^+$	10.21 ± 0.91	10.2/10.0	10.1 ± 0.4	-0.14 ± 0.04	-0.01	
	$\pi^0 ho^0$	3.90 ± 0.26	3.55/3.83	3.86 ± 0.23	0.37 ± 0.15	-0.03	Cheng (\//)
	K^+K^{*-}	1.68 ± 0.11	1.72/1.73	1.65 ± 0.11	-0.75 ± 0.37	-0.01	
	K^-K^{*+}	4.43 ± 0.31	4.37/4.37	4.56 ± 0.21	0.15 ± 0.04	0	
	$K^0 \bar{K}^{*0}$	0.27 ± 0.06	1.1/1.1	0.246 ± 0.048	-0.15 ± 0.21	-0.7	
	$ar{K}^0 K^{*0}$	0.32 ± 0.09	1.1/1.1	0.336 ± 0.063	-0.34 ± 0.16	-0.7	
	$\pi^0\omega$	0.12 ± 0.05	0.85/0.18	0.117 ± 0.035	-2.14 ± 0.95	0.02	
	$\pi^0 \phi$	1.22 ± 0.04	1.11/1.11	1.20 ± 0.04	0	-0.0002	
	$\eta\omega$	2.25 ± 0.14	2.4/2.0	1.98 ± 0.18	-0.38 ± 0.10	-0.1	
	$\eta'\omega$	0.01 ± 0.00	0.04/0.02	• • •	0.96 ± 0.66	2.2	
	$\eta\phi$	0.16 ± 0.02	0.19/0.18	0.167 ± 0.034	0	0.003	$-19 \pm 44 \pm 6$
	ηho^0	0.59 ± 0.07	0.54/0.45	• • •	0.10 ± 0.30	1.0	
	$\eta' ho^0$	0.06 ± 0.01	0.21/0.27	• • •	0.16 ± 0.22	-0.1	
$D^+ \rightarrow$	$\pi^+ ho^0$	0.61 ± 0.10	0.42/0.58	0.83 ± 0.15	2.20 ± 1.38	0.5	
	$\pi^0 ho^+$	4.53 ± 0.64	2.7/2.5	• • •	0.49 ± 0.37	0.2	
	$\pi^+\omega$	0.26 ± 0.07	0.95/0.80	0.28 ± 0.06	0.74 ± 2.03	-0.05	
	$\pi^+ \phi$	6.29 ± 0.20	5.65/5.65	5.68 ± 0.11	0	-0.0001	
	ηho^+	1.02 ± 0.34	0.7/2.2	• • •	1.78 ± 0.69	-0.6	
	$\eta' ho^+$	1.03 ± 0.11	0.7/0.8	• • •	0.08 ± 0.11	0.5	
	$K^+ \bar{K}^{*0}$	3.82 ± 0.25	3.61/3.60	$3.83^{+0.14}_{-0.21}$	-1.06 ± 0.30	0.2	
	$\bar{K}K^{*+}$	9.80 ± 0.41	11/11	34 ± 16	0.10 ± 0.04	0.04	
D_s^+	$\pi^{+}K^{*0}$	3.65 ± 0.24	2.52/2.35	2.13 ± 0.36	1.05 ± 0.30	-0.1	
	$\pi^0 K^{*+}$	1.02 ± 0.07	0.8/1.0	• • •	1.15 ± 0.40	-0.2	
	$K^+ \rho^0$	2.10 ± 0.10	1.9/2.5	2.5 ± 0.4	-0.08 ± 0.07	0.3	
	$K^0 \rho^+$	11.47 ± 0.48	9.1/9.6	• • •	-0.08 ± 0.04	0.3	
	ηK^{*+}	0.64 ± 0.20	0.2/0.2	• • •	0.10 ± 0.48	1.1	
	$\eta' K^{*+}$	0.33 ± 0.02	0.2/0.2	• • •	$ -0.12 \pm 0.13$	-0.5	all in units of
	$K^+\omega$	2.12 ± 0.10	0.6/0.07	0.87 ± 0.25	0.01 ± 0.08	-2.3	all ill utills Of
	$K^+\phi$	0.12 ± 0.02	0.166/0.166	0.182 ± 0.041	0	-0.8	

2019

10⁻³

				${\mathcal B}$			$a_{ m CP}^{ m dir}$	
		Mode	ours	Qin+2014	\exp	ours	Qin + 2014	HFLAV
D^0	\rightarrow	$\pi^+ ho^-$	5.12 ± 0.29	4.74/4.66	5.15 ± 0.25	0.77 ± 0.22	-0.03	
		$\pi^- ho^+$	10.21 ± 0.91	10.2/10.0	10.1 ± 0.4	-0.14 ± 0.04	-0.01	
		$\pi^0 ho^0$	3.90 ± 0.26	3.55/3.83	3.86 ± 0.23	0.37 ± 0.15	-0.03	Cheng (WC)
	C	K^+K^{*-}	1.68 ± 0.11	1.72/1.73	1.65 ± 0.11	-0.75 ± 0.37	-0.01	
		K^-K^{*+}	4.43 ± 0.31	4.37/4.37	4.56 ± 0.21	0.15 ± 0.04	0	
modes of interest,		$K^0 \bar{K}^{*0}$	0.27 ± 0.06	1.1/1.1	0.246 ± 0.048	-0.15 ± 0.21	-0.7	
with sufficiently large		$\bar{K}^0 K^{*0}$	0.32 ± 0.09	1.1/1.1	0.336 ± 0.063	-0.34 ± 0.16	-0.7	
RR's and CPA's		$\pi^0 \omega$	0.12 ± 0.05	0.85/0.18	0.117 ± 0.035	-2.14 ± 0.95	0.02	
DIAS and CIAS.		$\pi^0 \phi$	1.22 ± 0.04	1.11/1.11	1.20 ± 0.04	0	-0.0002	
		$\eta\omega$	2.25 ± 0.14	2.4/2.0	1.98 ± 0.18	-0.38 ± 0.10	-0.1	
		$\eta'\omega$	0.01 ± 0.00	0.04/0.02	• • •	0.96 ± 0.66	2.2	
		$\eta\phi$	0.16 ± 0.02	0.19/0.18	0.167 ± 0.034	0	0.003	$-19 \pm 44 \pm 6$
		ηho^0	0.59 ± 0.07	0.54/0.45	• • •	0.10 ± 0.30	1.0	
		$\eta' ho^0$	0.06 ± 0.01	0.21/0.27	• • •	0.16 ± 0.22	-0.1	
D^+	$^{+} \rightarrow$	$\pi^+ ho^0$	0.61 ± 0.10	0.42/0.58	0.83 ± 0.15	2.20 ± 1.38	0.5	
		$\pi^0 ho^+$	4.53 ± 0.64	2.7/2.5	• • •	0.49 ± 0.37	0.2	
		$\pi^+\omega$	0.26 ± 0.07	0.95/0.80	0.28 ± 0.06	0.74 ± 2.03	-0.05	
		$\pi^+\phi$	6.29 ± 0.20	5.65/5.65	5.68 ± 0.11	0	-0.0001	
	C	ηho^+	1.02 ± 0.34	0.7/2.2	• • •	1.78 ± 0.69	-0.6	
		$\eta' ho^+$	1.03 ± 0.11	0.7/0.8	• • •	0.08 ± 0.11	0.5	
		$K^+ \bar{K}^{*0}$	3.82 ± 0.25	3.61/3.60	$3.83^{+0.14}_{-0.21}$	-1.06 ± 0.30	0.2	
		$\bar{K}K^{*+}$	9.80 ± 0.41	11/11	34 ± 16	0.10 ± 0.04	0.04	
L	D_s^+	$\pi^{+}K^{*0}$	3.65 ± 0.24	2.52/2.35	2.13 ± 0.36	1.05 ± 0.30	-0.1	
	L	$\pi^{0}K^{*+}$	1.02 ± 0.07	0.8/1.0	• • •	1.15 ± 0.40	-0.2	
		$K^+ \rho^0$	2.10 ± 0.10	1.9/2.5	2.5 ± 0.4	-0.08 ± 0.07	0.3	
		$K^0 \rho^+$	11.47 ± 0.48	9.1/9.6	• • •	-0.08 ± 0.04	0.3	
		ηK^{*+}	0.64 ± 0.20	0.2/0.2	• • •	0.10 ± 0.48	1.1	
		$\eta' K^{*+}$	0.33 ± 0.02	0.2/0.2	• • •	$ -0.12 \pm 0.13$	-0.5	all in units of
		$K^+\omega$	2.12 ± 0.10	0.6/0.07	0.87 ± 0.25	0.01 ± 0.08	-2.3	an in units of
		$K^+\phi$	0.12 ± 0.02	0.166/0.166	0.182 ± 0.041	0	-0.8	

2019

10⁻³

				${\mathcal B}$			$a_{ m CP}^{ m dir}$	
		Mode	ours	Qin+2014	\exp	ours	Qin+2014	HFLAV
-	$D^0 - $	\rightarrow $\pi^+ \rho^-$	5.12 ± 0.29	4.74/4.66	5.15 ± 0.25	0.77 ± 0.22	-0.03	
		$\pi^- ho^+$	10.21 ± 0.91	10.2/10.0	10.1 ± 0.4	-0.14 ± 0.04	-0.01	
		$\pi^0 ho^0$	3.90 ± 0.26	3.55/3.83	3.86 ± 0.23	0.37 ± 0.15	-0.03	Cheng CWC
		K^+K^{*-}	1.68 ± 0.11	1.72/1.73	1.65 ± 0.11	-0.75 ± 0.37	-0.01	
		K^-K^{*+}	4.43 ± 0.31	4.37/4.37	4.56 ± 0.21	0.15 ± 0.04	0	
modes of interest	9	$K^0 \bar{K}^{*0}$	0.27 ± 0.06	1.1/1.1	0.246 ± 0.048	-0.15 ± 0.21	-0.7	
with sufficiently la	rge	$\bar{K}^{0}K^{*0}$	0.32 ± 0.09	1.1/1.1	0.336 ± 0.063	-0.34 ± 0.16	-0.7	predict $\Delta a_{CP}^{dir}(K^+K^{*-} -$
R's and CPA's	0	$\pi^0\omega$	0.12 ± 0.05	0.85/0.18	0.117 ± 0.035	-2.14 ± 0.95	0.02	to be (-1.52 ± 0.43)
Ditty and Civity.		$\pi^0 \phi$	1.22 ± 0.04	1.11/1.11	1.20 ± 0.04	0	-0.0002	(-1.52 ± 0.45)
		$\eta\omega$	2.25 ± 0.14	2.4/2.0	1.98 ± 0.18	-0.38 ± 0.10	-0.1	
		$\eta'\omega$	0.01 ± 0.00	0.04/0.02	• • •	0.96 ± 0.66	2.2	
		$\eta \phi$	0.16 ± 0.02	0.19/0.18	0.167 ± 0.034	0	0.003	$-19 \pm 44 \pm 6$
		ηho^0	0.59 ± 0.07	0.54/0.45	• • •	0.10 ± 0.30	1.0	
		$\eta' ho^0$	0.06 ± 0.01	0.21/0.27	• • •	0.16 ± 0.22	-0.1	
	D^+ –	$\rightarrow \pi^+ \rho^0$	0.61 ± 0.10	0.42/0.58	0.83 ± 0.15	2.20 ± 1.38	0.5	
		$\pi^0 \rho^+$	4.53 ± 0.64	2.7/2.5	• • •	0.49 ± 0.37	0.2	
		$\pi^+\omega$	0.26 ± 0.07	0.95/0.80	0.28 ± 0.06	0.74 ± 2.03	-0.05	
		$\pi^+\phi$	6.29 ± 0.20	5.65/5.65	5.68 ± 0.11	0	-0.0001	
		ηho^+	1.02 ± 0.34	0.7/2.2		1.78 ± 0.69	-0.6	
		$\eta' \rho^+$	1.03 ± 0.11	0.7/0.8	•••	0.08 ± 0.11	0.5	
		$K^{+}K^{*0}$	3.82 ± 0.25	3.61/3.60	$3.83^{+0.14}_{-0.21}$	-1.06 ± 0.30	0.2	
		KK^{*+}	9.80 ± 0.41	11/11	34 ± 16	0.10 ± 0.04	0.04	
	D_s^+	$\pi^{+}K^{*0}$	3.65 ± 0.24	2.52/2.35	2.13 ± 0.36	1.05 ± 0.30	-0.1	
		$\pi^{0}K^{*+}$	1.02 ± 0.07	0.8/1.0	• • •	1.15 ± 0.40	-0.2	
		$K^+ \rho^0$	2.10 ± 0.10	1.9/2.5	2.5 ± 0.4	-0.08 ± 0.07	0.3	
		$K^0 ho^+$	11.47 ± 0.48	9.1/9.6	• • •	-0.08 ± 0.04	0.3	
		ηK^{*+}	0.64 ± 0.20	0.2/0.2	• • •	0.10 ± 0.48	1.1	
		$\eta' K^{*+}$	0.33 ± 0.02	0.2/0.2	• • •	-0.12 ± 0.13	-0.5	all in units of
		$K^+\omega$	2.12 ± 0.10	0.6/0.07	0.87 ± 0.25	0.01 ± 0.08	-2.3	an in units of
		$K^+\phi$	0.12 ± 0.02	0.166/0.166	0.182 ± 0.041	0	-0.8	

Summary

- The theory community has been facing serious challenges in the charm sector, mainly due to the lack of a good effective theory.
- A reliable, first-principle calculation of long-distance, nonperturbative dynamics is missing, same for both perturbation- and symmetry-based approaches.
- Flavor SU(3) symmetry-breaking effects are introduced in a data-driven way.
- It is still an open question whether the observed CPA's can be accommodated within the SM or not.
- "New physics" in the CP violation of the D mesons here could mean either new mechanisms within the SM or physics beyond the SM.
- At the moment, precision measurements for the CPA's of more decay modes (also the BR's of some less well-determined modes) will check theory predictions and tell us which theoretical approach is closer to the true story.

Enjoy FPCP (Fun Puzzles in Charm Physics)!