

Results from the T2K+NOvA Joint Analysis

Dr. Veera Mikola on behalf of T2K and NOvA collaborations FPCP Conference 28/5/2024

GOOD UNIVERSITY GUIDE

melans creation mailant

SCOTTISH UNIVERSITY OF THE YEAR

Neutrino Physics

Three Flavor Mixing in Lepton Sector

- Create neutrinos in one lepton flavour state, observe in another state
- Flavour and mass states mixing quantum mechanically; each flavour state is a superposition of different mass states

Three Flavor Mixing in Lepton Sector

$\nu_{\mu} \text{ Disappearance Channel}$ $P_{\mu \to x} \approx 1 - \sin^2 2\theta_{23} \cdot \sin^2 \left(\frac{\Delta m_{32}^2 L}{4E_{\nu}} \right)$

Matter effects: Coherent forward scattering in $v_e \rightarrow$ modifies oscillations compared to vacuum, dependent on the sign on Δm_{32}^2

v_e Appearance Channel

Leading term only

Open Questions

- What is the order of the masses?
- Octant of θ_{23} ? • If θ_{23} = 45° then $|U_{\mu3}| = |U_{\tau3}|$
 - Maximal mixing
- CP Violation in the lepton sector?
 - Leptogenesis?

T2K and NOvA Experiments

T2K Experiment

- T2K uses different technologies for its far and near detectors
- Energy of the incoming neutrino is reconstructed using QE kinematics:
 - ND: Selection based on reconstructed muon track and number of pions
 - FD: Cherenkov rings (incoming angle and momentum)

NOvA Experiment

- Two functionally identical, finely granulated tracking calorimeter detectors
- Energy reconstruction for both detectors use combination of lepton and hadronic component

Why Joint Fit? How?

Why Joint Fit?

- Different baselines, energies \rightarrow lift degeneracies in δ_{CP} and sign of Δm^2_{32}
- Different peak neutrino energies
 T2K: primarily Quasi-Elastic and 2p2h
 interactions
 NOvA: mix of Quasi-Elastic, 2p2h, Resonant

and DIS interactions

- NOvA baseline much longer than T2K
 - Different dependance on matter effects; NOvA more sensitive to mass hierarchy
- T2K flux had larger relative impact on δ_{CP}
- More Data!

27/05/2024

Joint Analysis Strategy

- Construction:
 - Poisson likelihood from each experiment
 - Systematics marginalised using data-driven priors
 - External constraints on $\theta_{13}, \theta_{12}, \Delta m^2_{21}$
- Output: posterior densities and credible intervals for bayes factor for discrete model preferences

Red represents T2K codebase & blue shows NOvA codebase.

Models & Systematics

- Flux and detector model
 - Different between experiments due to different energies, detector technology etc.
 - No significant correlations
- Cross-section model
 - Use different interaction models and generators
 - Investigate impact of models and correlations

Correlations in cross-section systematic parameters

- Evaluate a range of artificial scenarios to evaluate the impact of possible correlations
- Example: Fabricated parameters for each experiment which bias oscillation parameters and study impact of correlating, uncorrelating and anti-correlating parameters
- Final conclusion: no need to correlate systematic parameters at this exposure
- Exception: ${}^{\nu_{\mu}}/_{\nu_{e}}$ and ${}^{\overline{\nu}_{\mu}}/_{\overline{\nu}_{e}}$ cross-section uncertainties where treatment is identical*
 - Fully correlated in the fit

*Phys. Rev. D 86, 053003 (2012)

Alternate Neutrino Interaction Models

- Evaluate the robustness of the fit against various alternate models
- Pre-decided thresholds for bias:
 - Change in the width of the 1D intervals <10%
 - Change in central value < 50% of systematic uncertainty
- **Conclusion:** No alternate model tests failed the preset threshold bias criteria

• Example: Suppression in sin²θ₂₃
 • based on tune to the MINERvA data*

Results

Data Samples

- This fit uses data collected by both experiments up until 2020 * **
- Reactor constraint used: $\sin^2 2\theta_{13} = 0.0850 \pm 0.0027$
- Goodness of fit evaluated using **posterior predictive p-values**
 - Compare likelihood best fit data and fluctuated predictions
 - Criteria for this analysis requires the post-fit model p-value is greater than 0.05
- Also checked p-values for individual detector samples

Channel	P-value	NOvA	T2K
v_e	0.62	0.90	0.19 (v_e) , 0.79 $(v_e 1\pi)$
$ar{v}_e$	0.40	0.21	0.67
v_{μ}	0.62	0.68	0.48
$ar{v}_{\mu}$	0.72	0.38	0.87
Total	<u>0.75</u>	0.64	0.72

Channel	NOvA	T2K	Combined
ν_e	82	$94^{(\nu_e)}$ $14^{(\nu_e 1\pi)}$	190
$\bar{\nu}_e$	33	16	49
$ u_{\mu}$	211	318	529
$\bar{ u}_{\mu}$	105	137	242
Total	431	579	1010

- The oscillation fits can be marginalised over each mass ordering : inverted, normal and both
 - **Conditional**: intervals constructed in a particular mass ordering
 - Non-conditional: intervals constructed across both mass orderings

*K. Abe et al., Phys. Rev. D **103**, 112008 (2021) ** M. A. Acero et al, Phys. Rev. D **106**, 032004 (2022)

Results: $sin^2\theta_{23}$ and $sin^2\theta_{13}$

- Small preference for lower octant of θ_{23} if no reactor constraints applied
- Upper octant preferred if PDG reactor constraint applied
- Without reactor constraints the joint fit measurements have a degeneracy in the mixing angles

No reactor constraint

1D reactor constraint

Results: Mass Ordering

- Small preference for inverted ordering from the fraction of posterior density
- Bayes factors give no conclusive statement about preferred mass ordering

	No reactor constraint	1D reactor constraint
Bayes factor	2.45	1.38
Posterior density	71% (IO) : 29% (NO)	58% (IO): 42% (NO)

Results: δ_{CP}

- Both MO: higher posterior density around $\delta_{CP} = -\frac{\pi}{2}$
- NO: Wider range of values, higher posterior density close to $\delta_{CP} = \pm \pi$
- IO: Enhanced preference for $\delta = \frac{\pi}{2}$

$$\delta_{CP} = -\frac{\pi}{2}$$

Results: Jarlskog Invariant

• Parameterisation independent measure of CPV:

 $J = s_{13}c_{13}^2 s_{12}c_{12}s_{23}c_{23}sin\delta_{CP}$

- If $J = 0 \rightarrow CP$ conservation
- If $J \neq 0 \rightarrow CP$ violation
- Both MO: Broad range of probable *J*
- NO: Broad range of probable J
- IO: J = 0 point is outside 3σ credible interval, also true for a change in the prior on δ_{CP} to be flat in $\sin \delta_{CP}$

Comparison to T2K Only and NOvA Only Results

- Joint fit gives a tighter constraint in IO and relieves differences in NO
- Small preference for mass ordering flips with the joint fit
- Enhances the precision for Δm^2_{32}

Comparison to Other Experiments

• T2K-NOvA joint fit has the smallest uncertainty on Δm^2_{32} compared to previous measurements

• T2K-NOvA joint fit is consistent with other δ_{CP} measurements

Summary

- Joint analysis fits both experiments datasets successfully
- No strong preference for mass ordering, small preference (58%:42%) for inverted ordering
 - Both experiments previously had a small preference for NO
- Normal Ordering allows for a wide range of δ_{CP} values, while in Inverted Ordering CP conserving values fall outside of the 3σ credible intervals
 - Similar conclusions found for Jarlskog invariant
- Strong constraint on Δm^2_{32}
- Both experiments continue to collect data and improve individual analyses
 - T2K ND upgrade, improved models, continue data collection

Thank you for listening! Any questions?

#UofGWorldChangers

Backup

Energy Spectrum

Priors

Parameter	ARIA sampling prior	MaCh3 sampling Prior	Priors used for the analysis
θ ₂₃	Uniform in $\theta_{_{23}}$	Uniform in $sin^2\theta_{_{23}}$	Uniform in $sin^2\theta_{_{23}}$
θ ₁₃	Uniform in $\theta_{_{13}}$	Uniform in $sin^2 2\theta_{13}$	Uniform in sin²2θ ₁₃ & Gaussian reactor constraint
$ \Delta m^2_{32} $	Uniform in ∆m² ₃₂	Uniform in ∆m² ₃₂	Uniform in $ \Delta m^2_{_{32}} $
MO	Uniform in MO with a 50% switch probability	Uniform in MO with a 50% switch probability	Uniform in MO with a 50% switch probability
δ _{CP}	Uniform in $\boldsymbol{\delta}_{_{CP}}$	Uniform in $\boldsymbol{\delta}_{_{\mathrm{CP}}}$	Uniform in $oldsymbol{\delta}_{_{ ext{CP}}}$ & Uniform in sin $oldsymbol{\delta}_{_{ ext{CP}}}$ (for J)

Why Joint Fit?

32

NOvA Extrapolation

- $\sin^2 \theta_{23}$ bias mock data (nightmare) study

27/05/2024

Systematics

Eur. Phys. J. C (2023) 83:782 (2023)

Oscillation Parameter	Largest NOvA Systematic	Largest T2K Systematic
δ_{CP}	second class currents	$\sigma_{ u_e}/\sigma_{ u_\mu}$ cross section
	and radiative corrections	and antineutrino equivalents
$\sin^2 heta_{23}$	neutron visible energy	2p2h C-O scaling
Δm^2_{32}	calibration	7% SK energy-scale [*]

- Correlating largest systematics on Δm_{32}^2 across both experiments.

Oscillation	Largest NOvA	Largest T2K
Parameter	Systematic	Systematic
δ_{CP}	second class currents	$\sigma_{\nu_e}/\sigma_{\nu_{\mu}}$ cross section
	and radiative corrections	and antineutrino equivalents
$\sin^2 heta_{23}$	neutron visible energy	2p2h C-O scaling
Δm^2_{32}	calibration	7% SK energy-scale [*]

Correlating largest systematics on $\sin^2 \theta_{23}$ across both experiments.

posterior probability

0.35

0.4

0.45

0.5

(c) $\sin^2 \theta_{23}$

0.55

100% Correlatio

Oscillation	Largest NOvA	Largest T2K
Parameter	Systematic	Systematic
δ_{CP}	second class currents	$\sigma_{\nu_e}/\sigma_{\nu_{\mu}}$ cross section
	and radiative corrections	and antineutrino equivalents
$\sin^2 heta_{23}$	neutron visible energy	2p2h C-O scaling
Δm^2_{32}	calibration	7% SK energy-scale [*]

• Correlating largest systematics on $\sin^2 \theta_{23}$ across both experiments.

Alternate Models

- Alternate models that had the largest impact on T2K's 2020 fit and the two cross-experiment model checks were done for the joint analysis:
 - Non-QE: ND280 CC0π data are under-predicted by the T2K pre-fit prediction. This difference can be taken accounted for by the large freedom in the CCQE model. To check this large freedom does not cause bias, an alternate model where this under-prediction is attribution to only non-QE processes is produced.
 - **Minerva1Pi**: suppression of CC and NC resonant pion production at low-Q² to describe for GENIE v2 implementation of Rein-Seghal model to describe the data.
 - Pion SI: replaced GEANT4 model* was replaced with NEUT's Salcedo–Oset model**

* S. Agostinelli et al., (The GEANT4 collaboration), Nucl. Instrum. Meth. A 506 (2003) 250–303 SLAC-PUB-9350

** L. L. Salcedo, E. Oset, M. J. Vicente-Vacas, and C. Garcia-Recio, Nucl. Phys. A 484 (1988) 557–592 Print-87-1084 (Valencia) 27/05/2024

Alternate Models: HF-CRPA* Phys. Rev. D 106, 0730

- Hartree Fock (HF) Continuum Random Phase Approximation (CRPA)*
- Applies modifications to the nuclear models (Spectral Function for T2K, Local Fermi Gas for NOvA)
- Recent T2K analyses have included an additional smearing on Δm^2_{32} based on variations seen when considering the HF-CRPA nuclear model.
 - Both NOvA and T2K independently studied the impact of this alternate nuclear model on their 2020-era analyses.
 - When taken together in the context of the joint fit, the bias is no larger than the thresholds set for any of the fake data metrics.

27/05/2024

Alternate Models: $CC0\pi E_{n,reconstructed} - E_{lepton}$ in T2K vs NOvA

- In T2K the p_T of the lepton is used to measure the recoiling energy by two body quasielastic kinematics.
- In NOvA, the visible recoil is measured.
- In this T2K-NOvA analysis, we are not relying on a single model to simultaneously describe these variables, but we may in the future
- MINERvA compares the two types of energy measures: recoil in bins of q_0^{QE} (the energy T2K adds to the muon energy)
 - Agreement with this model is poor
 - Events where the QE hypothesis says there should be lots of proton energy added, but MINERvA does not see that energy!
- T2K and NOvA naturally continue to investigate improvements in their cross section models. We appreciate the continued theoretical and experimental effort in the community 27/05/2024

Alternate Models

T2K ν_{μ} sample

 Mock Data MINERvA1pi

- Baseline Model

Prediction from ND Mock Data

 $\begin{array}{l} \textbf{NOvA} \\ \nu_{\mu} \text{ sample} \end{array}$

27/05/2024 *<u>Phys. Rev. D 100, 072005 (2019)</u>

Results: Jarlskog Invariant

Fitter Comparisons

50

Posterior density

T2K & NOvA Comparisons

T2K & NOvA Comparisons

20

15

10

Posterior density

Comparison to Other Experiments

- Daya Bay highest precision on $\sin^2 \theta_{13}$
- In general, LBL experiments have much less precise measurements but are consistent with reactor experiment results

