Hongyue Duyang

FPCP2024 Chulalongkorn University, Bangkok, Thailand

Solving the Neutrino Mass Hierarchy Problem

杜杨洪岳

Shandong University

- Current experiments' status.
- Next-generation experiments.
- Summary

• What it the neutrino mass hierarchy (MH) problem, and how to solve it.

Introduction to the MH problem

$$\begin{split} |\nu_{\alpha}\rangle &= \sum_{i=1}^{3} \mathbf{U}_{\alpha i}^{*} |\nu_{i}\rangle \\ U &= \begin{pmatrix} 1 & 0 & 0 \\ 0 & \cos\theta_{23} & \sin\theta_{23} \\ 0 & -\sin\theta_{23} & \cos\theta_{23} \end{pmatrix} \begin{pmatrix} \cos\theta_{13} & 0 & \sin\theta_{13}e^{-i\delta} \\ 0 & 1 & 0 \\ -\sin\theta_{13}e^{i\delta} & 0 & \cos\theta_{13} \end{pmatrix} \begin{pmatrix} e^{i\delta} \\ e^{$$

- \bullet
- Remaining questions about the neutrino mass: \bullet
 - Absolute mass scale?
 - Mass origin (Majorana or Dirac)? \bullet
 - Which is the lightest neutrino mass state (the sign of Δm_{31} or Δm_{32})? \bullet
 - Normal hierarchy (NH): m₁<m₂<m₃
 - Inverted hierarchy (IH): m₃<m₁<m₂

Neutrino oscillations indicate non-zero neutrino mass, contradicts SM prediction.

Importance of the MH problem

- Models predict different mass hierarchies. \bullet
- Correlates with δ_{CP} and θ_{23} octant measurements.
- Affects the determination of v mass origin and absolute scale. \bullet
 - IH indicates larger effective mass for $0\nu\beta\beta$ and β decay. \bullet
 - Life would be easier for a lot of us if it is IH! lacksquare
- This talk gives an overview of the current status and the future of \bullet solving the MH problem from an experimental point of view.

 $(\Delta m^2)_{atm}$

 $(\Delta m^2)_{sol}$

 $(m_3)^2$

 $(m_2)^2$

 $(m_1)^4$

 $(m_2)^2$

 $(m_1)^2$

 $(m_3)^2$

ν_e

ν_μ

ν_τ

disfavored

V

cosmology

10⁻¹

 $(\Delta m^2)_{sol}$

 $(\Delta m^2)_{atm}$

How to determine the MH

How to Determine MH?

(m2)

(m₁)

 $(m_3)^2$

Ve

ν_τ

Accelerator neutrinos

- Maximized sensitivity by joint-analysis of different experiments with synergies.
- Note: core-collapse supernova neutrinos not included in this talk given the time limit.

Solar neutrinos

Historically, sign of Δm_{12}^2 is determined by solar neutrinos with the matter effect.

Vacuum oscillation of $\bar{\nu}_{\rho}$ disappearance, interference between the Δm_{31}^2 and Δm_{32}^2 terms

inverted hierarchy

 (Δm^2)

 $(\Delta m^2)_{atm}$

ullet

Reactor neutrinos

How to Determine MH: Atmospheric Neutrinos

 \bullet

- Degeneracies between MH, θ_{23} octant, and δ_{CP} . \bullet
- Better to be able to separate neutrinos and anti-neutrinos.
 - Difficult given the massive detectors. \bullet
 - Still sensitivity without $\nu/\bar{\nu}$ separation since two have different flux and cross sections \bullet

How to Determine MH: Accelerator Neutrinos

- See talk by Veera Matilda Mikola tomorrow. \bullet

5(

How to Determine MH: Reactor Neutrinos

$$-\cos^4 \sin^2 2 2_{12} \sin^2 4_{21}$$
 6 8 E

- lacksquare
- Independent from θ_{23} octant and δ_{CP} .
- Made possible by the relatively large θ_{13} value. ullet
- Need really good energy resolution and statistics. \bullet

Vacuum oscillation utilizing small differences in $|\Delta m_{31}^2|$ and $|\Delta m_{32}^2|$ for different MH.

Experiments' Status

Atmospheric Neutrino Experiments: Super-Kamiokande

Phase	Dates	Live time (Days)	Photo-coverage (%)	Neutr taggin
SK I	1996–2001	1489.2	40	• • •
SK II	2002–2005	798.6	19	•••
SK III	2006–2008	518.1	40	• • •
SK IV	2008–2018	3244.4	40	Н
SK V	2019–2020	461.0	40	Н
SK Gd	2020–Present	• • •	40	H + C

- Most of the current sensitivity if from SuperK.
- Rejection of IH by 92.3% confidence level.

Super-K + T2K

- Simultaneous fit of Super-K and T2K published data.
 - Correlated systematic uncertainties.
- Prefer NH with $\Delta \chi^2 = 8.5 \text{K} + T2 \text{K IO}$

Accelerator-based Experiments: NOvA

- 14 kton segmented LS dete
- 810 km baseline.
- 290 ton ND for systematic of
- Favors NH by 1.0 σ .

PHYS. REV. D 106, 032004 (2022)

Joint NOvA-T2K Analysis

- \bullet
- Correlated systematics taken into account.
- Challenging analysis: different ND-FD extrapolation strategies. \bullet
- The joint analysis show modest preference for IH (IH/NH = 58%:42%), although each \bullet experiment favors NH by itself.

PHYS. REV. D 106, 032004 (2022)

- During 2020 and 2021, an early configuration of the detector with six lines was in operation
 - Analysis with 433 kton-years of exposure
- NH is prefered -2 log(LNO/LIO) = 0.9. (PoS(ICRC2023)996)
- For more details see the talk by Ekaterini Tzamariudaki.

• 7 Mton water-Cherenkov detector at the bottom of the Mediterranean Sea with 115 strings.

11

IceCube DeepCore/Upgrade

- DeepCore: 8 more strings with more PMTs.
 - 10 Mton mass.
 - Lower threshold (3 100 GeV) lacksquare
- Upgrade: 7 more strings
 - 2025/2026 lacksquare

M.P. Rodrigues, Nufact 2023

- Jiangmen Underground Neutrino Observatory (JUNO).
- 20kton homogeneous LS detector with 78% PMT coverage.
- Taishan Neutrino Observatory (TAO) for flux measurement.
- Currently under construction. Physics run to start in 2025.

Reactor Neutrino Experiment: JUNO

The largest liquid scintillator detector ever built.

Reactor v Experiment for the MH problem: JUNO

- 2.9% @ 1 MeV energy resolution
- 3σ sensitivity by itself expected after 6 years data-taking.

JUNO Atmospheric Neutrino Measurement

JUNO's directional reconstruction performance for atmospheric neutrinos

- JUNO is also able to measure atmospheric neutrino oscillations
 - Good directional resolution using a ML approach.
 - Capable of ν vs $\bar{\nu}$ statistically with help from neutron captures on hydrogen.
- Sensitivity study on-going.

Synergy between Reactor/Accelerator/Atmospheric Neutrino Experiments

- $\Delta \frac{2}{32}$
- An extra $\Delta \chi^2$ for the determination of $MH^{\frac{2}{32}}_{\geq 4\sigma}$
- Larger joint sensitivity than simple sum of experiments.
 - Plot showing $\int_{u}^{a} \int_{u}^{b} V NOVA + T2K$ sensitivity via NuFit5.0 after ~6 year of JUNO data-taking.

Reactor and accelerator/atmospheric experiments get different Δm_{32}^2 values for the wrong NH since they use different oscillation modes. (Vacuum oscillation vs matter effects) • An extra $\Delta \gamma^2$ for the determination of MH $_{32}^2$ $\sigma(\Delta \frac{2}{32} =$ δ_{CP} $\Delta \frac{2}{32}$

 $\geq 5.0\sigma$

16

Next Generation Experiments

- Phased construction:
 - \bullet
 - Phase II: 2 additional modules, > 2 MW beam. \bullet
- "Low-exposure": 3-5 years of phase I (two 10 kton LArTPC modules) \bullet
- \bullet

Ultimate sensitivity with full 40 kton far detector can resolve MH (>5 σ) regardless of δ_{CP} or other parameters.

- Phased construction:
 - \bullet
 - Phase II: 2 additional modules, > 2 MW beam. \bullet
- "Low-exposure": 3-5 years of phase I (two 10 kton LArTPC modules) \bullet
- \bullet

Ultimate sensitivity with full 40 kton far detector can resolve MH (>5 σ) regardless of δ_{CP} or other parameters.

- joint analysis.

Summary

- Neutrino hierarchy is important.
- Current experiments favor normal hierarchy (by $\sim 3\sigma$) lacksquareaccording to NuFit5.3).
 - Still tensions between data. \bullet
- Very exciting time ahead: lacksquare
 - Likely that MH will be solved by joint analysis from multiple experiments in the next 5-6 years.
 - Reactor + accelerator/atmospheric with synergy.
 - DUNE will give a final answer.

- Neutrino hierarchy is important.
- Current experiments favor normal hierarchy (by $\sim 3\sigma$) according to NuFit5.3).
 - Still tensions between data.
- Very exciting time ahead:
 - Likely that MH will be solved by joint analysis from multiple experiments in the next 5-6 years.
 - Reactor + accelerator/atmospheric with synergy.
 - DUNE will give a final answer.

Summary

Thank you!

Back up slides

 Latest global fitting (NuFIT5.3) favors NH by $\sim 3\sigma$, driving by Super-K.

Global Fitting

NuFIT 5.3 (2024)

	Normal Ordering (best fit)		Inverted Ordering $(\Delta \chi^2 = 2.3)$	
	bfp $\pm 1\sigma$	3σ range	bfp $\pm 1\sigma$	3σ range
$\sin^2 \theta_{12}$	$0.307^{+0.012}_{-0.011}$	$0.275 \rightarrow 0.344$	$0.307\substack{+0.012\\-0.011}$	$0.275 \rightarrow 0.344$
$\theta_{12}/^{\circ}$	$33.66\substack{+0.73\\-0.70}$	$31.60 \rightarrow 35.94$	$33.67\substack{+0.73\\-0.71}$	$31.61 \rightarrow 35.94$
$\sin^2 \theta_{23}$	$0.572^{+0.018}_{-0.023}$	$0.407 \rightarrow 0.620$	$0.578^{+0.016}_{-0.021}$	$0.412 \rightarrow 0.623$
$\theta_{23}/^{\circ}$	$49.1^{+1.0}_{-1.3}$	$39.6 \rightarrow 51.9$	$49.5^{+0.9}_{-1.2}$	$39.9 \rightarrow 52.1$
$\sin^2 \theta_{13}$	$0.02203\substack{+0.00056\\-0.00058}$	$0.02029 \rightarrow 0.02391$	$0.02219\substack{+0.00059\\-0.00057}$	$0.02047 \rightarrow 0.02396$
$\theta_{13}/^{\circ}$	$8.54_{-0.11}^{+0.11}$	$8.19 \rightarrow 8.89$	$8.57^{+0.11}_{-0.11}$	$8.23 \rightarrow 8.90$
$\delta_{ m CP}/^{\circ}$	197^{+41}_{-25}	$108 \to 404$	286^{+27}_{-32}	$192 \to 360$
$\frac{\Delta m^2_{21}}{10^{-5} \ {\rm eV^2}}$	$7.41\substack{+0.21 \\ -0.20}$	$6.81 \rightarrow 8.03$	$7.41\substack{+0.21 \\ -0.20}$	$6.81 \rightarrow 8.03$
$\frac{\Delta m^2_{3\ell}}{10^{-3}~{\rm eV^2}}$	$+2.511^{+0.027}_{-0.027}$	$+2.428 \rightarrow +2.597$	$-2.498^{+0.032}_{-0.024}$	$-2.581 \rightarrow -2.409$
	Normal Ordering (best fit)		Inverted Ordering $(\Delta \chi^2 = 9.1)$	
	bfp $\pm 1\sigma$	3σ range	bfp $\pm 1\sigma$	3σ range
$\sin^2 \theta_{12}$	$0.307^{+0.012}_{-0.011}$	$0.275 \rightarrow 0.344$	$0.307^{+0.012}_{-0.011}$	$0.275 \rightarrow 0.344$
$\theta_{12}/^{\circ}$	$33.67^{+0.73}_{-0.71}$	$31.61 \rightarrow 35.94$	$33.67\substack{+0.73\\-0.71}$	$31.61 \rightarrow 35.94$
$\sin^2 \theta_{23}$	$0.454\substack{+0.019\\-0.016}$	$0.411 \rightarrow 0.606$	$0.568^{+0.016}_{-0.021}$	$0.412 \rightarrow 0.611$
$\theta_{23}/^{\circ}$	$42.3^{+1.1}_{-0.9}$	$39.9 \rightarrow 51.1$	$48.9^{+0.9}_{-1.2}$	$39.9 \rightarrow 51.4$
$\sin^2 \theta_{13}$	$0.02224\substack{+0.00056\\-0.00057}$	$0.02047 \rightarrow 0.02397$	$0.02222^{+0.00069}_{-0.00057}$	$0.02049 \rightarrow 0.02420$
$\theta_{13}/^{\circ}$	$8.58^{+0.11}_{-0.11}$	$8.23 \rightarrow 8.91$	$8.57^{+0.13}_{-0.11}$	$8.23 \rightarrow 8.95$
$\delta_{ m CP}/^{\circ}$	232^{+39}_{-25}	$139 \to 350$	273^{+24}_{-26}	$195 \to 342$
$\frac{\delta_{\rm CP}}{10^{-5} \ {\rm eV}^2}$	232^{+39}_{-25} $7.41^{+0.21}_{-0.20}$	$\begin{array}{c} 139 \rightarrow 350 \\ 6.81 \rightarrow 8.03 \end{array}$	273^{+24}_{-26} $7.41^{+0.21}_{-0.20}$	$\begin{array}{c} 195 \rightarrow 342 \\ 6.81 \rightarrow 8.03 \end{array}$
	$\frac{\sin^2 \theta_{12}}{\theta_{12}/^{\circ}}$ $\frac{\sin^2 \theta_{23}}{\theta_{23}/^{\circ}}$ $\frac{\sin^2 \theta_{13}}{\theta_{13}/^{\circ}}$ $\frac{\Delta m_{21}^2}{10^{-5} \text{ eV}^2}$ $\frac{\Delta m_{3\ell}^2}{10^{-3} \text{ eV}^2}$ $\frac{\sin^2 \theta_{12}}{\theta_{12}/^{\circ}}$ $\frac{\sin^2 \theta_{23}}{\theta_{23}/^{\circ}}$ $\frac{\sin^2 \theta_{13}}{\theta_{13}/^{\circ}}$	$\begin{array}{r c c c c c c c c c c c c c c c c c c c$	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$

 I am looking for postdoc candidates to work on the JUNO please contact me at <u>duyang@sdu.edu.cn</u>

Advertisement

experiment, especially the reconstruction with machine learning and analysis of reactor and atmospheric oscillations. If you are interested