vA Interactions

The 22nd FPCP conference, Bangkok, Thailand

May 28th 2024 Adi Ashkenazi adishka@tauex.tau.ac.il

Neutrino Physics

The Neutrino sector might hint to physics beyond the Standard

 v_{τ}

Model

Neutrino oscillate from one flavour to another

Implying their mass and imposing many questions:

 ν_{μ}

What is their mass ordering?

 ν_e

Is CP symmetry violated?

Are there more than the 3 light neutrinos?

The challenge - next generation high precision

Oscillation experiments aim to answer the CP nature and the mass ordering of neutrinos as well as search for new physics

The challenge - next generation high precision

Incoming Energy Reconstruction QE-like events

Cherenkov detectors:

Assuming QE interaction Using lepton only

$$E_{QE} = \frac{2M\epsilon + 2ME_l - m_l^2}{2(M - E_l + |k_l|\cos\theta_l)}$$

Tracking detectors: Calorimetric sum Using All detected particles

$$E_{\text{cal}} = E_l + E_p^{\text{kin}} + \epsilon$$
[1p0 π]

 ϵ is the nucleon separation energy ~ 20 MeV

$$P(v_{\mu} \to v_{x}) = \sin^{2}(2\theta) \times \sin^{2}\left(\frac{\Delta m^{2}L}{4E_{v}}\right)$$

$$P(v_{\mu} \to v_{x}) = \sin^{2}(2\theta) \times \sin^{2}\left(\frac{\Delta m^{2}L}{4E_{v}^{true}}\right)$$

$$P(v_{\mu} \to v_{x}) = \sin^{2}(2\theta) \times \sin^{2}\left(\frac{\Delta m^{2}L}{4E_{v}^{real}}\right)$$

The challenge - next generation high precision

E Reconstruction Requires Interaction Modelling

E Reconstruction Requires Interaction Modelling

v Reconstruction Requires Interaction Modelling

Lepton-Nucleus Interaction Modelling -Need constraints

Neutrino event generators simulating vA interaction

Factorisation of

- Initial state
- Each interaction mechanism separately
- Final State Interactions

Empirical or semi classical models with many free parameters

The challenge - next generation high precision

$$N(E_{rec},L) \propto \int \Phi(E,L)\sigma(E)f_{\sigma}(E,E_{rec})dE$$

Measurement

Incoming true flux Modelling input

eav Why electrons?

Electrons and Neutrinos have:

- Identical initial nuclear state
- Same Final State Interactions
- Similar interactions
 (vector vs. vector + axial)

Useful to constrain model uncertainties

e

eav Why electrons?

Electrons and Neutrinos have:

- Identical initial nuclear state
- Same Final State Interactions
- Similar interactions
 (vector vs. vector + axial)

Useful to constrain model uncertainties

Electrons have known energies

Useful to test incoming energy reconstruction methods,

Inclusive e data and generators

Most eA inclusive measurements are in limited phase space for limited nuclei lacking exclusive hadron production measurements

Inclusive v data and Generators

Most vA inclusive still lacking statistics, using low energy beam

CLAS Detector

Electron beam with energies up to 6 GeV

CLAS Detector

Electron beam with energies up to 6 GeV

Improved acceptance ($\theta_e > 5^\circ$)

High Luminosity 10³⁵ cm⁻²s⁻¹

Detection thresholds: 400 MeV/c for p and n (!) 200 MeV/c for π^{\pm} 300 MeV/c for γ

Open Trigger: 2,4,6 GeV H, D, 4He, ¹²C, ⁴⁰Ar ...

Towards new Inclusive results on Ar

²H at 6GeV $\theta_e \in [10.5, 39.5]^\circ$ with 1° steps

Matan Goldenberg

Towards new Inclusive results on Ar

Energy transfer [GeV]

Towards new Inclusive results on Ar

4°Ar

$\overrightarrow{\mathcal{C4V}}$ 1p0 π Event Selection

Focus on Quasi Elastic events:

- 1 proton above 300 MeV/c
- no additional hadrons above detection threshold:

150 MeV/c for $P_{\pi^{+/-}}$

500 MeV/c for P_{π^0}

Different interaction lead to multi-hadron final states

Gaps can make them loop like QE-like events with outgoing $1\mu 1p$

Different interaction lead to multi-hadron final states

Gaps can make them loop like QE-like events with outgoing $1\mu 1p$

Inclusive Energy Reconstruction

Nature **599**, 565 (2021)

2

Nature 599, 565 (2021)

³² Nature **599**, 565 (2021)

³³ Nature **599**, 565 (2021)

³⁴ Nature **599**, 565 (2021)

Focusing on different reaction mechanisms Standard Transverse Variables

δα_T Sensitive to Final State Interactions

δp_T

-p^µ

 $\delta \alpha_{T}$

p^p_T

Transverse missing momentum

6 Nature **599**, 565 (2021)

p_T sensitivity to interaction mechanisms

Nature **599**, 565 (2021) 37

Transverse Kinematic Variables - δα_T

A. Papadopoulou et al. in preparation

MC vs. (e,e'p) Transverse Variables

Low $\alpha T < 45$

QE enhanced region

High $135 < \alpha T < 180$

Non QE contributions

MC vs. (e,e'p) Transverse Variables

 $1p1\pi$ - and $1p1\pi$ + and no other hadrons or photons

1p1 π - Possible at free nucleon level

 $1p1\pi$ + needs two or more nucleons and or undetected particles (FSI)

Julia Tena Vidal

Julia Tena Vidal

Shape-only comparison Data corrected for bkg. Not radiative corrected yet Only statistical errors

Shape is well described by GENIE with FSI

Low momentum protons are not well described They are very sensitive to FSI

 α_T most sensitive to FSI is very well described

First Look at 1p1\pi^+

For $1p1\pi^+$ most events are due to FSI Well described

Reconstructed incoming energy for 1p1\pi

Tail, due to missing particles, not well described

Future Plans

Working on:

New dataset including Argon

1*p* MC

(scaled to unity)

1n MC

(scaled to unity)

1.8

Ar(e,e'N)_{0π} E_{cal} [GeV]

2

1p Data

scaled to unity

1.6

1.4

Multi differential analysis

Pion production

PRE-PRELIMINARY

1.2

Two nucleon final state

Arbitrary Units

0.3

0.25

0.2

0.15

0.1

0.05

0 8

1n Data

(scaled to unity)

The *eav* Collaboration

visit <u>www.e4nu.com</u>

Contact: Minerba betan009@fnal.gov, Adi adishka@tauex.tau.ac.il

The TAU Neutrino Group - We're hiring

ection DAQ proto DUVE

Summary

vA interaction uncertainties limit oscillation parameters extraction

While vA cross sections measured T2K, SBN

Showing first use of semi-exclusive eA data to explore vA uncertainties

Data/model disagreement even for electron QE-like events, and in the various background signatures.

Time to utilize these datasets to constrain or models and get ready for the coming exciting years

Thank you for your attention

Complementary efforts

Collaborations	Kinematics	Targets	Scattering	Publications
E12-14-012 (JLab)	$E_e = 2.222 \mathrm{GeV}$	Ar, Ti	(e,e')	Phys Rev C 99 054608
(Data collected: 2017)	$ heta_e=$ 15.5, 17.5,	AI, C	(e, e'p)	Phys.Rev.D 105 112002
	20.0, 21.5			•
lofforcon Lab	$ heta_p=$ -39.0, -44.0,			
Jenerson Lab	-44.5, -47.0			
	-50.0			
e4nu/CLAS (JLab)	$E_e = 1$, 2, 4, 6 GeV	H, D, He,	(e, e')	
(Data collected: 1999, 2022)	$ heta_e > 5$	C, Ar, ⁴⁰ Ca,	e,p,n,π,γ	Nature 599 , 565
		⁴⁸ Ca, Fe, Sn	in the final state	Phys.Rev.D 103 113003
Jefferson Lab				
A1 (MAMI)	$E_e = 1.6 { m GeV}$	H, D, He	(e,e')	
(Data collected:2020)		C, O, AI	2 additional	
(More data planned)		Ca, Ar, Xe	charged particles	
LDMX (SLAC)	$E_e = 4.0 \mathrm{GeV}$		(e, e')	
(Planned)	$ heta_e <$ 40		e,p,n,π	
JLAU			in the final state	
eALBA	$E_e = 500 \mathrm{MeV}$	C, CH	(e,e')	
(Planned)	- few GeV	Be, Ca		

Adaptation from Proceedings of the US Community Snowmass2021 arXiv:2203.06853v1 [hep-ex]

e4v and DUNE

54

e4v demonstrate best coverage.

The only effort with data already taken and expected exclusive measurements.

Systematic Uncertainties - Data side

- 1. Background subtraction:
 - 1. Assuming no $\phi_{q\pi}$ dependency when rotation hadrons system around q vector. H(e, e'p π) cross sections measured dependency affected the subtracted spectra by about 1%.
 - Varying the CLAS φ acceptance in each sector reduced by10– 20%. This changed the resulting subtracted spectra by about 1% at 1.159 and 2.257 GeV and by 4% at 4.453 GeV.
- 2. Varying the photon identification cuts using its velocity greater than two standard deviations (3σ at 1.159 GeV) below v = c, by ±0.25σ. This gave an uncertainty in the resulting subtracted spectra of 0.1%, 0.5% and 2% at 1.159, 2.257 and 4.453 GeV.

Systematic Uncertainties - Data side

Source	Uncertainty (%)	
Detector acceptance Identification cuts φ _{qπ} cross section dependence Number of rotations	2,2.1,4.7 (@ 1.1,2.2,4.4 GeV)	
Sector dependence	6	
Acceptance correction	2-15	
Overall normalization	3	
Electron inefficiency	2	

Modelling Consistency

6 tune G18_10a_02_11a

electrons neutrinos Nuclear Local fermi gas model Rosenbluth CS Nieves model QE Empirical model | Nieves model MEC Resonances Berger Sehgal DIS AGKY **FSI** hA2018 **Radiative effects** Others

tune GTEST19 (SuSAv2)

electrons	neutrinos		
Relativistic Mean Field			
SuSAv2			
SuSAv2			
Berger Sehgal			
AGKY			
hA2018			
Radiative effects			