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The Neutrino sector might hint to physics beyond the Standard 

Model   

Neutrino oscillate from one flavour to another  

Implying their mass and imposing many questions:
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Neutrino Physics 
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What is their mass ordering? 

Is CP symmetry violated?

Are there more than the 3 light neutrinos?
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The challenge - next generation high precision
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Oscillation experiments aim to answer the CP nature and the 
mass ordering of neutrinos as well as search for new physics 

Near Detector
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Fig. 1: Neutrino oscillations and energy spectra measurements | (Left) Neutrino energy spectra
reconstruction depends on our ability to model the interaction of neutrinos with atomic nuclei and the propagation
of particles through the atomic nucleus. This flow chart shows the process, starting with the oscillated far-detector

⌫e incident-energy spectrum (green), di↵erentiating the physical neutrino interactions (green arrows) from the
experimental analysis (blue arrows), and ending up with the inferred incident-energy spectrum (blue). The blue

curve is obtained from simulating the neutrino-nucleus interactions with the CLAS data-derived smearing matrices
and reconstructing the flux using the model-derived smearing matrices instead. The input incident-energy spectrum

is shown for reference as the thin green.

f�i(E,Erec) is a smearing matrix relating the real (E)
and reconstructed (Erec) neutrino energies. Erec di↵ers
from E due to both experimental e↵ects (e.g. detector
resolutions, ine�ciencies, backgrounds) and nuclear in-
teraction e↵ects (e.g. nucleon motion, meson currents,
nucleon reinteraction). While experimental e↵ects are
generally understood and can be minimized using im-
proved detectors, nuclear e↵ects are irreducible and must
be accounted for using theoretical models, typically im-
plemented in neutrino event generators.

The precision to which oscillation parameters can be
determined experimentally therefore depends on our abil-
ity to extract �↵(E,L) fromN↵(Erec, L), see Fig. 1. This
is largely determined by the accuracy of the theoretical
models used to calculate �i(E) and f�i(E,Erec). Cur-
rent oscillation experiments report significant systematic
uncertainties due to these interaction models [7–10] and
simulations show that energy reconstruction errors can
lead to significant biases in extracting �CP at DUNE [11].
There is a robust theoretical e↵ort to improve these mod-
els [12–14].

Because there are no mono-energetic high-energy neu-
trino beams, these models cannot be tested for individual
neutrino energies. Instead, experiments tune models of

�i(E) and f�i(E,Erec) to reproduce their near-detector
data, where the unoscillated flux �(E, 0) is relatively well
known from hadronic calculations [15–17].

While highly informative, such integrated constraints
are insu�cient to ensure that the models are correct for
each value of E. Therefore, even if the models are tuned
to reproduce the near-detector data, there is no guaran-
tee that they are suitable for analyzing far-detector data,
where the neutrino flux can be very di↵erent due to os-
cillations.

Here we report the first measurement of f�i(E,Erec)
for mono-energetic electron-nucleus scattering, and use
it to test interaction models used by neutrino oscilla-
tion analyses. Both types of leptons, e and ⌫, interact
similarly with nuclei. Both particles interact with nu-
clei via a vector current, while neutrinos have an addi-
tional axial-vector current. The nuclear ground state is
the same in both cases and many of the nuclear reac-
tion e↵ects are similar. See Methods for details. There-
fore, any model of neutrino interactions (vector+axial-
vector) should also be able to reproduce electron (vec-
tor) interactions. The data presented here can therefore
test and constrain neutrino-nucleus interaction models
to be used in analysis of neutrino oscillation measure-
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from E due to both experimental e↵ects (e.g. detector
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nucleon reinteraction). While experimental e↵ects are
generally understood and can be minimized using im-
proved detectors, nuclear e↵ects are irreducible and must
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simulations show that energy reconstruction errors can
lead to significant biases in extracting �CP at DUNE [11].
There is a robust theoretical e↵ort to improve these mod-
els [12–14].
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neutrino energies. Instead, experiments tune models of
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fore, any model of neutrino interactions (vector+axial-
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The challenge - next generation high precision

νe

N(Erec, L) /
Z

�(E,L)�(E)f�(E,Erec)dE�(E,L)N(Erec, L) /
Z

�(E,L)�(E)f�(E,Erec)dE�(E)f�(E,Erec) N(Erec, L)N(Erec, L) /
Z

�(E,L)�(E)f�(E,Erec)dEN(Erec, L) /
Z

�(E,L)�(E)f�(E,Erec)dEN(Erec, L) /
Z

�(E,L)�(E)f�(E,Erec)dE

Incoming true fluxIncoming true flux Modelling Input Modelling Input Measurement 

νµ
νµ νµ

νµ νµ

νµ

graph

2

Fig. 1: Neutrino oscillations and energy spectra measurements | (Left) Neutrino energy spectra
reconstruction depends on our ability to model the interaction of neutrinos with atomic nuclei and the propagation
of particles through the atomic nucleus. This flow chart shows the process, starting with the oscillated far-detector

⌫e incident-energy spectrum (green), di↵erentiating the physical neutrino interactions (green arrows) from the
experimental analysis (blue arrows), and ending up with the inferred incident-energy spectrum (blue). The blue

curve is obtained from simulating the neutrino-nucleus interactions with the CLAS data-derived smearing matrices
and reconstructing the flux using the model-derived smearing matrices instead. The input incident-energy spectrum

is shown for reference as the thin green.

f�i(E,Erec) is a smearing matrix relating the real (E)
and reconstructed (Erec) neutrino energies. Erec di↵ers
from E due to both experimental e↵ects (e.g. detector
resolutions, ine�ciencies, backgrounds) and nuclear in-
teraction e↵ects (e.g. nucleon motion, meson currents,
nucleon reinteraction). While experimental e↵ects are
generally understood and can be minimized using im-
proved detectors, nuclear e↵ects are irreducible and must
be accounted for using theoretical models, typically im-
plemented in neutrino event generators.

The precision to which oscillation parameters can be
determined experimentally therefore depends on our abil-
ity to extract �↵(E,L) fromN↵(Erec, L), see Fig. 1. This
is largely determined by the accuracy of the theoretical
models used to calculate �i(E) and f�i(E,Erec). Cur-
rent oscillation experiments report significant systematic
uncertainties due to these interaction models [7–10] and
simulations show that energy reconstruction errors can
lead to significant biases in extracting �CP at DUNE [11].
There is a robust theoretical e↵ort to improve these mod-
els [12–14].

Because there are no mono-energetic high-energy neu-
trino beams, these models cannot be tested for individual
neutrino energies. Instead, experiments tune models of

�i(E) and f�i(E,Erec) to reproduce their near-detector
data, where the unoscillated flux �(E, 0) is relatively well
known from hadronic calculations [15–17].

While highly informative, such integrated constraints
are insu�cient to ensure that the models are correct for
each value of E. Therefore, even if the models are tuned
to reproduce the near-detector data, there is no guaran-
tee that they are suitable for analyzing far-detector data,
where the neutrino flux can be very di↵erent due to os-
cillations.

Here we report the first measurement of f�i(E,Erec)
for mono-energetic electron-nucleus scattering, and use
it to test interaction models used by neutrino oscilla-
tion analyses. Both types of leptons, e and ⌫, interact
similarly with nuclei. Both particles interact with nu-
clei via a vector current, while neutrinos have an addi-
tional axial-vector current. The nuclear ground state is
the same in both cases and many of the nuclear reac-
tion e↵ects are similar. See Methods for details. There-
fore, any model of neutrino interactions (vector+axial-
vector) should also be able to reproduce electron (vec-
tor) interactions. The data presented here can therefore
test and constrain neutrino-nucleus interaction models
to be used in analysis of neutrino oscillation measure-

     1      2      3      4      5     6

 ν
μ 

 fl
ux

 [A
.U

]

Eν [GeV]μ

µ

π

p

π

p

νe

ντ



5

Cherenkov detectors:
Assuming QE interaction
Using lepton only

Tracking detectors:
Calorimetric sum 
Using All detected particles

✏ is the nucleon separation energy ~ 20 MeV

Ecal = El + Ekin
p + ✏EQE =

2M✏+ 2MEl �m2
l

2(M � El + |kl| cos ✓l)
[1p0π]

Incoming Energy Reconstruction  
QE-like events 



Oscillations Require incoming E  Reconstruction
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Oscillations Require incoming E  Reconstruction
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Oscillations Require incoming E  Reconstruction
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Oscillations Require incoming E  Reconstruction
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The challenge - next generation high precision
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 Neutrino Energy [GeV]  Neutrino Energy [GeV] 

Simulation of oscillation effects     
in future DUNET2K,  Phys.  Rev.  D  91,  072010  (2015) 
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E  Reconstruction Requires Interaction Modelling 

El - El’

σ
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Resonance
Deep Inelastic Scattering

Meson Exchange

Quasi Elastic

El - El’

ν Reconstruction Requires Interaction Modelling 

σ
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Neutrino event generators simulating νA interaction

and more

Lepton-Nucleus Interaction Modelling - 
Need constraints 

Factorisation of  
- Initial state  
- Each interaction mechanism separately  
- Final State Interactions 

Empirical or semi classical models 
with many free parameters 
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N(Erec, L) /
Z

�(E,L)�(E)f�(E,Erec)dE�(E,L)

Incoming true fluxMeasurement Incoming true flux Modelling inputModelling input
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Use external constraints

Improve theory

Use near detector  

νA scattering 
eA scattering 

The challenge - next generation high precision



 e4ν
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- Identical initial nuclear state
- Same Final State Interactions
- Similar interactions            

(vector vs. vector + axial)

Electrons and Neutrinos have:

Useful to constrain model uncertainties 

              Why electrons?



 e4ν
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- Identical initial nuclear state
- Same Final State Interactions
- Similar interactions            

(vector vs. vector + axial)

Electrons and Neutrinos have:

Useful to constrain model uncertainties 

              Why electrons?

Electrons have known energies 

Useful to test incoming energy reconstruction methods 



Inclusive e data and generators 

v3.0.6 tune G18_10a_02_11a  
Phys.Rev.D 103 (2021) 113003 
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40Ar   E = 2.222 GeV   θ = 15.54ο 12C      E = 0.961 GeV   θ = 37.5ο  

12C   E = 1.299 GeV   θ =37.5ο  

Most eA inclusive measurements are in limited phase space for limited nuclei  
lacking exclusive hadron production measurements 
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Inclusive ν data and Generators 
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v3.0.6 tune G18_10a_02_11a  

Most νA inclusive still lacking statistics, using low energy beam
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CLAS Detector
Electron beam with energies up to 6 GeV

Large acceptance  

Charged particles above detection 

threshold:

300 MeV/c for p
150 MeV/c for Pπ+/-  
500 MeV/c for Pπ0

Open Trigger: 1,2,4 GeV, 12C, 56Fe
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CLAS Detector
Electron beam with energies up to 6 GeV

Improved  acceptance  (θe > 5o)

High Luminosity 1035 cm-2s-1

Beam

Detection thresholds:
400 MeV/c for  and  (!)
200 MeV/c for 
300 MeV/c for 

Open Trigger: 
2,4,6 GeV
H, D, 4He, 12C, 40Ar …

𝑝 𝑛
𝜋±

𝛾



Towards new Inclusive results on Ar
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Towards new Inclusive results on Ar
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Towards new Inclusive results on Ar
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            1p0π Event Selection
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Focus on Quasi Elastic events:
  1 proton above 300 MeV/c  
  no additional hadrons above detection threshold:
       150 MeV/c for Pπ+/-  

       500 MeV/c for Pπ0 

𝑝
𝑒− 𝛾

𝑒−
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Background Subtraction
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Different interaction lead to multi-hadron final states
Gaps can make them loop like QE-like events with outgoing 1μ1p 
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Different interaction lead to multi-hadron final states
Gaps can make them loop like QE-like events with outgoing 1μ1p 
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Data Driven Background Subtraction
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!
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- Using measured (e,e’pπ) events

- Rotate p,π around q 

- Determine event acceptance 

- Subtract (e,e’pπ)  contribution 

- Same for final states with more than 2 hadrons

Julia 
Tena Vidal
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Data
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Inclusive Energy Reconstruction 

E = 1.159 GeV

Nature 599, 565 (2021) EQE =
2M✏+ 2MEl �m2

l

2(M � El + |kl| cos ✓l)
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Reconstructed Calorimetric Energy 

0.6 0.8 1 1.2
0

0.5

1

1.5

2

Cr
os

s S
ec

tio
n

(a)

0.1

0.2

1 1.5 2

(b)

0.1

0.2

1 1.5 20

2

4

6

Cr
os

s S
ec

tio
n

(d)

0.2
0.4

0.6

2 3 4

(c)

0.1

0.2

2 3 4

(e)

0.2
0.4

0.6

C12

Fe56

1.159 GeV (x1/2) 2.257 GeV 4.453 GeV (x5)

 [GeV]cal E
π1p0

(e,e’p)

Data

SuSav2 (Total)
QE MEC
RES DIS

G2018

Ge
Vbµ

 
ca

l
dE
σd

Ge
Vbµ

 
ca

l
dE
σd

E = 1.159 GeV

Nature 599, 565 (2021)

C(e,e’p)0π  Ecal [GeV]



32

2.257 GeV 4.453 GeV

0.6 0.8 1 1.2
0

0.5

1

1.5

2

C
ro

ss
 S

ec
tio

n

(a)

0.1

0.2

1 1.5 2

(b)

0.1

0.2

1 1.5 20

2

4

6

C
ro

ss
 S

ec
tio

n

(d)

0.2
0.4

0.6

2 3 4

(c)

0.1

0.2

2 3 4

(e)

0.2
0.4

0.6

C12

Fe56

1.159 GeV (x1/2) 2.257 GeV 4.453 GeV (x5)

 [GeV]cal E
π1p0

(e,e’p)

Data

SuSav2 (Total)
QE MEC
RES DIS

G2018

G
eVb
µ

 
ca

l
dE
σd

G
eVb
µ

 
ca

l
dE
σd

Nature 599, 565 (2021)

Reconstructed Calorimetric Energy 
1.159 GeV



33

2.257 GeV 4.453 GeV
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Reconstructed Calorimetric Energy 
1.159 GeV
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2.257 GeV 4.453 GeV
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Reconstructed Calorimetric Energy 
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Focusing on different reaction mechanisms 
Standard Transverse Variables  
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PT = P e0

T + P p
T

Sensitive to 
hit nucleon momentum 

δαΤ
Sensitive to 

Final State Interactions 
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Transverse missing momentum  
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pT sensitivity to interaction mechanisms 
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Transverse Kinematic Variables - δαT

38 A. Papadopoulou et al. in preparation  



MC vs. (e,e’p) Transverse Variables 
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Low αT  < 45  

QE enhanced region  

High  135 < αT  < 180    

Non QE contributions  



MC vs. (e,e’p) Transverse Variables 
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Afroditi  
Papadopoulou 

@ ΑNL arXiv:2301.03700 [hep-ex]

https://arxiv.org/pdf/2301.03700.pdf
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First Look at 1p1π

Julia 
Tena Vidal

𝝅+

𝑝

𝝅−

∆0

𝑒− 𝛾
𝝅−

∆0

𝑒− 𝛾
𝑝

1p1π - and 1p1π +   and no other hadrons or photons

1p1π - Possible at free nucleon level

1p1π + needs two or more nucleons and or undetected particles (FSI)

𝑒− 𝑒−
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First Look at 1p1π-

Julia 
Tena Vidal

   
Shape-only comparison 
Data corrected for bkg.  
Not radiative corrected yet 
Only statistical errors 
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First Look at 1p1π-

Julia 
Tena Vidal

Shape is well described by GENIE with FSI 



44

First Look at 1p1π-

Julia 
Tena Vidal

Low momentum protons are not well described  
They are very sensitive to FSI 
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First Look at 1p1π-

Julia 
Tena Vidal

αT most sensitive to FSI is very well described  
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First Look at 1p1π+

Julia 
Tena Vidal

For 1p1π+  most events are due to FSI  
Well described  
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Reconstructed incoming energy for 1p1π

Julia 
Tena Vidal

Tail, due to missing particles, not well described 



Future Plans 
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Working on:

New dataset including Argon 

Multi differential analysis 

Pion production 

Two nucleon final state 

Julia 
Tena Vidal

Preliminary 

GENIE simulation 
Improving models 

Alon  
Sportes

Joshua 
Barrow

Ar(e,e’N)0π Ecal [GeV]
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The           Collaboration         

visit www.e4nu.com  
Contact: Minerba betan009@fnal.gov, Adi adishka@tauex.tau.ac.il 

http://www.e4nu.com
mailto:betan009@fnal.gov
mailto:adishka@tauex.tau.ac.il
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The TAU Neutrino Group - We’re hiring 

protolocal setup for neutron detection 
DAQ
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Summary

While νA cross sections measured T2K, SBN 

Showing first use of semi-exclusive eA data to 
explore νA uncertainties  

Data/model disagreement even for electron 
QE-like events, and in the various background 
signatures. 

νΑ interaction uncertainties limit oscillation parameters extraction 

Time to utilize these datasets to constrain or models and get ready for the coming 
exciting years 



Thank you for your attention
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Complementary efforts

Adaptation from Proceedings of the US Community Snowmass2021 
arXiv:2203.06853v1 [hep-ex] 

Publications 

Phys. Rev. C 99, 054608 

Phys.Rev.D 105 112002


Nature 599, 565 

Phys.Rev.D 103 113003


https://arxiv.org/abs/2203.06853
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e4ν and DUNE 

CC events 
in DUNE
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e4ν demonstrate best coverage. 
The only effort with data already taken and expected exclusive measurements.

https://arxiv.org/abs/2203.06853


Systematic Uncertainties - Data side 
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1. Background subtraction: 
1. Assuming no φqπ dependency when rotation hadrons system 

around q vector. H(e, e’pπ) cross sections measured dependency 
affected the subtracted spectra by about 1%. 

2. Varying the CLAS φ acceptance in each sector reduced by10–
20%. This changed the resulting subtracted spectra by about 1% at 
1.159 and 2.257 GeV and by 4% at 4.453 GeV. 

2. Varying the photon identification cuts using its velocity greater than 
two standard deviations (3σ at 1.159 GeV) below v = c, by ±0.25σ. 
This gave an uncertainty in the resulting subtracted spectra of 0.1%, 
0.5% and 2% at 1.159, 2.257 and 4.453 GeV. 



Systematic Uncertainties - Data side 
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      v3.0.6      tune   G18_10a_02_11a                tune GTEST19 (SuSAv2)

Modelling Consistency 

electrons neutrinos

Nuclear Local fermi gas model

QE Rosenbluth CS Nieves model

MEC Empirical model Nieves model

Resonances Berger Sehgal

DIS AGKY

FSI  hA2018

Others Radiative effects

electrons neutrinos

Relativistic Mean Field

SuSAv2

SuSAv2

Berger Sehgal

AGKY

 hA2018

Radiative effects


