# Neutrinoless Double Beta Decay: Current results and future outlook

Aparajita Mazumdar



Postdoctoral Research Associate, Los Alamos National Laboratory (USA) LA-UR-24-25107

> May 27, 2024 Bangkok, Thailand Presented virtually FPCP 2024

## Double Beta Decays

In 1935, Maria Geoppert-Mayer first proposed the idea of  $2^{nd}$  order weak decays known as Double Beta ( $\beta\beta$ ) decays Possible in 35 even – even nuclei, where  $\beta$  decay is energy/spin suppressed.







## Double Beta Decays

 $2\nu\beta\beta$  A rare decay, allowed by the standard model



 $2\nu\beta\beta$  has been **observed** in 12 nuclei,  $T_{1/2}^{2\nu}$  ranges from  $10^{18} - 10^{24}$ y.

<sup>48</sup>Ca, <sup>76</sup>Ge, <sup>82</sup>Se, <sup>96</sup>Zr, <sup>100</sup>Mo, <sup>116</sup>Cd, <sup>128,130</sup>Te, <sup>136</sup>Xe, <sup>130</sup>Ba, <sup>150</sup>Nd, <sup>238</sup>U

## Neutrinoless Double Beta Decay

Neutrinos are the only known standard model particles, which can potentially be Majorana fermions (i.e., the neutrino could be its own antiparticle). In 1939, W. H. Furry proposed a fascinating variant of  $\beta\beta$  decays in which **no neutrinos** are emitted, possible due to its Majorana nature.

 $0v\beta\beta$ A rare lepton number violating process, **not allowed** by the standard model



Yet to be observed!

## A window to physics beyond the standard model

Implications, if  $0v\beta\beta$  is observed:

- Smoking gun evidence for the Majorana nature of the neutrino (i.e., the neutrino is its own antiparticle).
- Lepton Number violation  $\Delta L = 2$ .
- Can tell us more about the matter-antimatter asymmetry of the universe.
- Sensitive to the absolute mass of the neutrino.

Best sensitivity limits at (90% C.L.) for current  $0\nu\beta\beta$  experiments:KamLANDZen (136Xe): $T_{1/2}^{0\nu\beta\beta} > 2.3 \times 10^{26} y$ ,<br/>< m > < 0.036 - 0.156 eVGERDA (76Ge): $T_{1/2}^{0\nu\beta\beta} > 1.8 \times 10^{26} y$ ,<br/>< m > < 0.08 - 0.182 eVCUORE (130Te): $T_{1/2}^{0\nu\beta\beta} > 3.3 \times 10^{25} y$ ,<br/>< m > < 0.075 - 0.255 eV





# Interpreting the half life







Pontecorvo-Makí-Nakagawa-Sakata (PMNS) matrix elements

- Nuclear Matrix Element (NME) is a model dependent input to the result, required to interpret the results of the experiment.
- Historically, the nuclear matrix element (NME) has large uncertainty, having a scatter of 2 – 3x between different models.
- A lot of recent progress on the theoretical front to better constrain the value!

Experimental signature: peak at  $Q_{\beta\beta}$ .





<sup>76</sup>Ge

<sup>82</sup>Se

<sup>100</sup>Mo <sup>130</sup>Te <sup>136</sup>Xe

Degenerate

**N** 



Isotope considerations:

- Large isotopic abundance, either naturally available or through accessible isotopic enrichment
- Large  $Q_{\beta\beta}$
- Bonus points if the  $Q_{\beta\beta} > 2614$  keV, since it is above the prominent gamma lines in the natural radioactive backgrounds.

| $\beta\beta$ decay              | $Q_{\beta\beta}$   | i    |
|---------------------------------|--------------------|------|
| $^{A}X \rightarrow ^{A}Y$       | keV                | %    |
| $^{48}Ca \rightarrow ^{48}Ti$   | $4268.1 \pm 0.1$   | 0.2  |
| $^{76}Ge \rightarrow ^{76}Se$   | $2039.06 \pm 0.02$ | 7.7  |
| $^{82}Se \rightarrow ^{82}Kr$   | $2997.9\pm0.5$     | 8.7  |
| $^{96}Zr \rightarrow ^{96}Mo$   | $3356.0\pm0.2$     | 2.8  |
| $^{100}Mo \rightarrow ^{100}Ru$ | $3034.4 \pm 0.5$   | 9.8  |
| $^{110}Pd \rightarrow ^{110}Cd$ | $2017.1\pm0.7$     | 11.7 |
| $^{116}Cd \rightarrow ^{116}Sn$ | $2813.5\pm0.2$     | 7.5  |
| $^{124}Sn \rightarrow ^{124}Te$ | $2291.1 \pm 1.8$   | 5.8  |
| $^{130}Te \rightarrow ^{130}Xe$ | $2527.51 \pm 0.01$ | 34.1 |
| $^{136}Xe \rightarrow ^{136}Ba$ | $2457.8\pm0.3$     | 8.9  |
| $^{150}Nd \rightarrow ^{150}Sn$ | $3371.4 \pm 1.8$   | 5.6  |



Detector properties:

- High detection efficiency for the electrons
- Good energy resolution of the detector



Preferred for its higher efficiency



External source not preferable due to lower efficiency, but has its own advantages (can be used to study the topology)

## **Background sources**



Cosmogenics

Alpha and Neutron Activation

11



Finite background



SUPL

Baksan CallioLa **SNOLAB** INO Boulby Soudan CJPL LSM SURF Kamioka LSC LNGS WIPP Yemilab -Y2L ANDES



- Materials handling and cleanliness
- Strict radiopurity constraints



LAr (high Z, active)





Fiducialization

Shielding and active materials

Background reduction efforts:

- Underground labs to reduce the cosmogenic backgrounds.
- Careful materials transport, to avoid activation.

Signal Discrimination Techniques



Sensitivity scales linearly with exposure in the scenario in the background-free regime





Would be capable of a discovery with just a handful of counts!!

## Landscape of NDBD experiments

PHOTOSENSOR



# HEATH BATH

### Ionization detector

Semiconducting material (e.g. Ge)

Notable Pros:

- Great energy resolution.
- Modular and scalable to large masses.

## Cryogenic Bolometer Scin

Insulator (e.g. TeO<sub>2</sub>, LMO, etc.) or superconductor (Sn)

#### Notable Pros:

- Good energy resolution.
- Modular and scalable to large masses.



## Scintillation detector

Should be feasible to load in liquid scintillator

#### Notable Pros:

- Large mass and often a large loading fraction, leading to large exposures.
- Extremely radiopure.



Time Projection Chamber (TPC)

+ ...

Liquid or gas should produce both scintillation light + ionization signal

#### Notable Pros:

 3D position and energy reconstruction + particle identification

Choice of the isotope and adaptability to a detector technology is a major driving force for the choice of technology used in an experiment.

|                                         |                   |              |         |                           |                              |                               |                              |                       |                  |                                  |                                                          | $\mathcal{B}$ (events/ |                         |                      |                        |
|-----------------------------------------|-------------------|--------------|---------|---------------------------|------------------------------|-------------------------------|------------------------------|-----------------------|------------------|----------------------------------|----------------------------------------------------------|------------------------|-------------------------|----------------------|------------------------|
| Experiment                              | Isotope           | Status       | Lab     | $m_{\rm iso}~({\rm mol})$ | $\varepsilon_{\rm act}~(\%)$ | $\varepsilon_{\rm cont}~(\%)$ | $\varepsilon_{\rm mva}~(\%)$ | $\sigma \; (\rm keV)$ | ROI ( $\sigma$ ) | $\varepsilon_{\mathrm{ROI}}$ (%) | $\mathcal{E} \pmod{\operatorname{yr}/\operatorname{yr}}$ | mol yr)                | $\lambda_b$ (events/yr) | $T_{1/2}$ (yr)       | $m_{\beta\beta}$ (meV) |
| High-purity Ge detectors (Sec. VI.B)    |                   |              |         |                           |                              |                               |                              |                       |                  |                                  |                                                          |                        |                         |                      |                        |
| GERDA-II                                | <sup>76</sup> Ge  | Completed    | LNGS    | $4.5 	imes 10^2$          | 88                           | 91                            | 79                           | 1.4                   | -2, 2            | 95                               | 273                                                      | $4.2\times10^{-4}$     | $1.1 	imes 10^{-1}$     | $1.2 	imes 10^{26}$  | 93-222                 |
| MJD                                     | <sup>76</sup> Ge  | Completed    | SURF    | $3.1 \times 10^2$         | 91                           | 91                            | 86                           | 1.1                   | -2, 2            | 95                               | 212                                                      | $3.3 	imes 10^{-3}$    | $7.1 	imes 10^{-1}$     | $4.7\times10^{25}$   | 149-355                |
| LEGEND-200                              | <sup>76</sup> Ge  | Construction | LNGS    | $2.4 \times 10^3$         | 91                           | 91                            | 90                           | 1.1                   | -2, 2            | 95                               | 1684                                                     | $1.0 	imes 10^{-4}$    | $1.7 \times 10^{-1}$    | $1.5 	imes 10^{27}$  | 27-63                  |
| LEGEND-1000                             | <sup>76</sup> Ge  | Proposed     |         | $1.2\times10^4$           | 92                           | 92                            | 90                           | 1.1                   | -2, 2            | 95                               | 8736                                                     | $4.9\times10^{-6}$     | $4.3 	imes 10^{-2}$     | $1.3 	imes 10^{28}$  | 9.0-21                 |
| Xe time-projection chambers (Sec. VI.C) |                   |              |         |                           |                              |                               |                              |                       |                  |                                  |                                                          |                        |                         |                      |                        |
| EXO-200                                 | <sup>136</sup> Xe | Completed    | WIPP    | $1.2 \times 10^3$         | 46                           | 100                           | 84                           | 31                    | -2, 2            | 95                               | 438                                                      | $4.7 	imes 10^{-2}$    | $2.1 \times 10^{+1}$    | $2.4 	imes 10^{25}$  | 111-477                |
| nEXO                                    | <sup>136</sup> Xe | Proposed     | SNOLAB  | $3.4 	imes 10^4$          | 64                           | 100                           | 66                           | 20                    | -2, 2            | 95                               | 13 700                                                   | $4.0 	imes 10^{-5}$    | $5.5 	imes 10^{-1}$     | $7.4	imes10^{27}$    | 6.1-27                 |
| NEXT-100                                | <sup>136</sup> Xe | Construction | LSC     | $6.4	imes10^2$            | 88                           | 76                            | 49                           | 10                    | -1.0, 1.8        | 80                               | 167                                                      | $5.9 	imes 10^{-3}$    | $9.9 	imes 10^{-1}$     | $7.0 	imes 10^{25}$  | 66-281                 |
| NEXT-HD                                 | <sup>136</sup> Xe | Proposed     |         | $7.4 \times 10^3$         | 95                           | 89                            | 44                           | 7.7                   | -0.5, 1.7        | 65                               | 1809                                                     | $4.0 	imes 10^{-5}$    | $7.2 \times 10^{-2}$    | $2.2\times10^{27}$   | 12-50                  |
| PandaX-III-200                          | <sup>136</sup> Xe | Construction | CJPL    | $1.3 \times 10^3$         | 77                           | 74                            | 65                           | 31                    | -1.2, 1.2        | 76                               | 374                                                      | $3.0 	imes 10^{-3}$    | $1.1 	imes 10^{+0}$     | $1.5 	imes 10^{26}$  | 45-194                 |
| LZ-nat                                  | <sup>136</sup> Xe | Construction | SURF    | $4.7 \times 10^3$         | 14                           | 100                           | 80                           | 25                    | -1.4, 1.4        | 84                               | 440                                                      | $1.7 	imes 10^{-2}$    | $7.5 	imes 10^{+0}$     | $7.2 	imes 10^{25}$  | 64-277                 |
| LZ-enr                                  | <sup>136</sup> Xe | Proposed     | SURF    | $4.6 	imes 10^4$          | 14                           | 100                           | 80                           | 25                    | -1.4, 1.4        | 84                               | 4302                                                     | $1.7 	imes 10^{-3}$    | $7.3 \times 10^{+0}$    | $7.1 	imes 10^{26}$  | 20-87                  |
| Darwin                                  | <sup>136</sup> Xe | Proposed     |         | $2.7 	imes 10^4$          | 13                           | 100                           | 90                           | 20                    | -1.2, 1.2        | 76                               | 2312                                                     | $3.5 	imes 10^{-4}$    | $8.0	imes10^{-1}$       | $1.1 	imes 10^{27}$  | 17-72                  |
| Large liquid scin                       | tillators (       | Sec. VI.D)   |         |                           |                              |                               |                              |                       |                  |                                  |                                                          |                        |                         |                      |                        |
| KLZ-400                                 | <sup>136</sup> Xe | Completed    | Kamioka | $2.5 \times 10^3$         | 44                           | 100                           | 97                           | 114                   | -0.0, 1.4        | 42                               | 450                                                      | $9.8 	imes 10^{-3}$    | $4.4 	imes 10^{+0}$     | $3.3 	imes 10^{25}$  | 95-408                 |
| KLZ-800                                 | <sup>136</sup> Xe | Taking data  | Kamioka | $5.0 \times 10^3$         | 55                           | 100                           | 100                          | 105                   | -0.0, 1.4        | 42                               | 1143                                                     | $5.5 	imes 10^{-3}$    | $6.2 	imes 10^{+0}$     | $2.0 	imes 10^{26}$  | 38-164                 |
| KL2Z                                    | <sup>136</sup> Xe | Proposed     | Kamioka | $6.7 \times 10^{3}$       | 80                           | 100                           | 97                           | 60                    | -0.0, 1.4        | 42                               | 2176                                                     | $3.0 	imes 10^{-4}$    | $6.5 \times 10^{-1}$    | $1.1 	imes 10^{27}$  | 17-71                  |
| SNO + I                                 | <sup>130</sup> Te | Construction | SNOLAB  | $1.0 \times 10^4$         | 20                           | 100                           | 97                           | 74                    | -0.5, 1.5        | 62                               | 1232                                                     | $7.8 	imes 10^{-3}$    | $9.7 \times 10^{+0}$    | $1.8 	imes 10^{26}$  | 31-144                 |
| SNO + II                                | <sup>130</sup> Te | Proposed     | SNOLAB  | $5.1 	imes 10^4$          | 27                           | 100                           | 97                           | 57                    | -0.5, 1.5        | 62                               | 8521                                                     | $5.7 	imes 10^{-3}$    | $4.8 	imes 10^{+1}$     | $5.7	imes10^{26}$    | 17-81                  |
| Cryogenic calori                        | meters (Se        | ec. VI.E)    |         |                           |                              |                               |                              |                       |                  |                                  |                                                          |                        |                         |                      |                        |
| CUORE                                   | <sup>130</sup> Te | Taking data  | LNGS    | $1.6 \times 10^{3}$       | 100                          | 88                            | 92                           | 3.2                   | -1.4, 1.4        | 84                               | 1088                                                     | $9.1 \times 10^{-2}$   | $9.9 \times 10^{+1}$    | $5.1 \times 10^{25}$ | 58-270                 |
| CUPID-0                                 | <sup>82</sup> Se  | Completed    | LNGS    | $6.2 \times 10$           | 100                          | 81                            | 86                           | 8.5                   | -2, 2            | 95                               | 41                                                       | $2.8 \times 10^{-2}$   | $1.2 	imes 10^{+0}$     | $4.4 \times 10^{24}$ | 283-551                |
| CUPID-Mo                                | <sup>100</sup> Mo | Completed    | LSM     | $2.3 \times 10$           | 100                          | 76                            | 91                           | 3.2                   | -2, 2            | 95                               | 15                                                       | $1.7 \times 10^{-2}$   | $2.5 \times 10^{-1}$    | $1.7 	imes 10^{24}$  | 293-858                |
| CROSS                                   | <sup>100</sup> Mo | Construction | LSC     | $4.8 \times 10$           | 100                          | 75                            | 90                           | 2.1                   | -2, 2            | 95                               | 31                                                       | $2.5 	imes 10^{-4}$    | $7.6 \times 10^{-3}$    | $4.9 	imes 10^{25}$  | 54-160                 |
| CUPID                                   | <sup>100</sup> Mo | Proposed     | LNGS    | $2.5 \times 10^3$         | 100                          | 79                            | 90                           | 2.1                   | -2, 2            | 95                               | 1717                                                     | $2.3 	imes 10^{-4}$    | $4.0 	imes 10^{-1}$     | $1.1 	imes 10^{27}$  | 12-34                  |
| AMoRE-II                                | <sup>100</sup> Mo | Proposed     | Yemilab | $1.1 	imes 10^3$          | 100                          | 82                            | 91                           | 2.1                   | -2, 2            | 95                               | 760                                                      | $2.2\times10^{-4}$     | $1.7 	imes 10^{-1}$     | $6.7\times10^{26}$   | 15-43                  |
| Tracking calorimeters (Sec. VI.F)       |                   |              |         |                           |                              |                               |                              |                       |                  |                                  |                                                          |                        |                         |                      |                        |
| NEMO-3                                  | <sup>100</sup> Mo | Completed    | LSM     | $6.9 \times 10$           | 100                          | 100                           | 11                           | 148                   | -1.6, 1.1        | 42                               | 3                                                        | $9.4 	imes 10^{-1}$    | $3.0 	imes 10^{+0}$     | $5.6	imes10^{23}$    | 505-1485               |
| SuperNEMO-D                             | <sup>82</sup> Se  | Construction | LSM     | $8.5 \times 10$           | 100                          | 100                           | 28                           | 83                    | -4.2, 2.4        | 64                               | 15                                                       | $3.3 	imes 10^{-2}$    | $5.0 	imes 10^{-1}$     | $8.6	imes10^{24}$    | 201-391                |
| SuperNEMO                               | <sup>82</sup> Se  | Proposed     | LSM     | $1.2 	imes 10^3$          | 100                          | 100                           | 28                           | 72                    | -4.1, 2.8        | 54                               | 185                                                      | $5.3 	imes 10^{-3}$    | $9.8 	imes 10^{-1}$     | $7.8\times10^{25}$   | 67-131                 |

TABLE IV. Fundamental parameters driving the sensitive background and exposure of recent and future phases of existing experiments. The last two columns report the discovery sensitivity on the  $0\nu\beta\beta$ -decay half-life for 10 yr of live time and the corresponding sensitivity on  $m_{\beta\beta}$  for the range of NMEs specified in Table I. For completed experiments, sensitivities are computed using the reported final exposure. MJD, KLZ, and SuperNEMO-D refer to the MAJORANA DEMONSTRATOR, KamLAND-Zen, and the SuperNEMO Demonstrator, respectively.

0

κ.

## Landscape of NDBD experiments



16

## **Tonne scale effort – CUPID** (<sup>100</sup>Mo)

- Scintillating Bolometer (heat and light) so discrimination possible
- Makes use of the existing CUORE facility
- High efficiency (detector = source)
- <sup>100</sup>Mo has high Q-value above U/Th backgrounds
- CUPID demonstrator complete
- Projected sensitivity
  - m<sub>ββ</sub> 12-34 meV
  - 10<sup>27</sup> years







Eur. Phys. J. C 82, 1033 (2022)

# Tonne scale effort – nEXO (<sup>136</sup>Xe)

- Homogenous liquid <sup>enr</sup>Xe TPC
- 5-ton mass
- Large detector backgrounds attenuated in the center
- Powerful background restriction via topology
- Conceptual design in progress
- Projected sensitivity
  - $m_{\beta\beta}$  6-27 meV
  - 0.7 x 10<sup>28</sup> years









# Tonne scale effort – LEGEND (<sup>76</sup>Ge)

- <sup>enr</sup>Ge crystals
- High efficiency and excellent energy resolution
- Background suppression via active shielding and signal analysis
- Staged from 200-kg (operating since 2023) to 1000 kg
- Most favorable concept in DOE design review 2022
- Projected sensitivity
  - $m_{\beta\beta} 9 21 \text{ meV}$
  - 1.3 x 10<sup>28</sup> years



## The Future Outlook



- The next generation experiments cover the entire IH region, and could even possibly usher in an era of discovery!
- New ideas would be needed in order to push beyond the IH region.

#### https://nuclearsciencefuture.org/



As the highest priority for new experiment construction, we recommend that the United States lead an international consortium that will undertake a neutrinoless double beta decay campaign, featuring the expeditious construction of ton-scale experiments, using different isotopes and complementary techniques.

## Thank you for listening!

