

Recent results of $b \rightarrow sll$

22nd Conference on Flavor Physics and CP Violation

Rishabh Raturi, on behalf of the CMS Collaboration Indian Institute of Technology Bhubaneswar

Outline

- Introduction
- Lepton flavor universality
- Branching fraction measurements
- Angular analysis
- Amplitude analysis
- Global analysis
- Summary

Introduction

0

0

•

- [<u>Nature 546 (2017) 221-226</u>] One of the goals of experimental particle physics is to discover new particles and their interactions:
- One of the goals of experimental particle physics is to discover new particles and their interactions: New Physics (NP)
- Study the flavor changing neutral current (FCNC) transitions $b \rightarrow sl^+l^-$
 - \circ forbidden in SM at tree level

Standard Model (SM) is known to be incomplete

dominance of matter over antimatter

dark matter content of the Universe

- \circ proceeds through high order electroweak loop diagrams
- heavy new particles may enter these diagrams
 - large deviations from the SM predictions of decay rate and its dynamics
- \circ b \rightarrow sl⁺l⁻ sensitive to NP
- Such decays have been studied extensively in B-meson sector
 - testing lepton flavor universality
 - branching fractions
 - angular distributions

[<u>arXiv:2401.07090</u>]

- All leptons in SM (e, μ and τ) have the same interaction strength •
- Ratio of branching fractions (R_{μ}) of $B^+ \rightarrow K^+ \mu^+ \mu^-$ and $B^+ \rightarrow K^+ e^+ e^-$ in SM is predicted to be unity with high ۰ precision

FPCP-2024

- small masses of both e and μ as compared to b quark 0
- To reduce systematic uncertainties and precise modelling of e and μ ٠ reconstruction efficiencies: measured as double ratios

$$R_{K} = \frac{\mathcal{B}(B^{+} \to K^{+}\mu^{+}\mu^{-})}{\mathcal{B}(B^{+} \to J/\psi(\to \mu^{+}\mu^{-})K^{+})} \Big/ \frac{\mathcal{B}(B^{+} \to K^{+}e^{+}e^{-})}{\mathcal{B}(B^{+} \to J/\psi(\to e^{+}e^{-})K^{+})}$$

 $R_{K^{*0}} = \frac{\mathcal{B}(B^0 \to K^{*0} \mu^+ \mu^-)}{\mathcal{B}(B^0 \to K^{*0} I/\psi (\to \mu^+ \mu^-))} / \frac{\mathcal{B}(B^0 \to K^{*0} e^+ e^-)}{\mathcal{B}(B^0 \to K^{*0} I/\psi (\to e^+ e^-))} \quad \bullet$

$$R_{H} \equiv \frac{\int_{q_{\min}^{2}}^{q_{\max}^{2}} \frac{d\mathcal{B} (B \to H\mu^{+}\mu^{-})}{dq^{2}} dq^{2}}{\int_{q_{\min}^{2}}^{q_{\max}^{2}} \frac{d\mathcal{B} (B \to He^{+}e^{-})}{dq^{2}} dq^{2}}_{\substack{\mathsf{B}=\mathsf{B}^{*}, \ \mathsf{B}^{0}, \ \mathsf{B}_{s} \ \mathsf{or} \ \Lambda_{\mathsf{b}} \\ \mathsf{H}=\mathsf{K}^{+} \ \mathsf{or} \ \mathsf{K}^{*0}}} [Nat. Phys. 18 (2022) 277-282]$$

- R_{κ} 2.5 σ below SM [PRL 122 (2019) 191801]
- Using $\Lambda_{h} \rightarrow pK^{-}l^{+}l^{-}$ decays R_{nK} measurement consistent with SM (1σ) [JHEP 05 (2020) 040]

Results

- In q^2 1-6.0 GeV²/c⁴
 - \circ $R_K = 0.846^{+0.042+0.013}_{-0.039-0.012}$ 3.1 σ below SM prediction [<u>Nat. Phys. 18 (2022) 277-282</u>]
 - evidence for violation of lepton universality
 - $\circ ~~R_K = 0.78^{+0.46+0.09}_{-0.23-0.05}$ within 1 σ of SM prediction [arXiv:2401.07090]
- In q² 1.1-6.0 GeV²/c⁴ $R_{K^0_S}=0.66^{+0.20+0.02}_{-0.14-0.04}$ 1.5 σ

• In q² 0.045-6.0 GeV²/c⁴
$$R_{K^{*+}}=0.70^{+0.18+0.03}_{-0.13-0.04}$$
 1.4 σ

• Simultaneous test of muon-electron universality in low-q^2 0.1–1.1 GeV^2/c^4 and central-q^2 1.1–6.0 GeV^2/c^4

$$\begin{split} \mathrm{low-} q^2 \begin{cases} R_K &= 0.994^{+0.090}_{-0.082}(\mathrm{stat})^{+0.029}_{-0.027}(\mathrm{syst}), \\ R_{K^*} &= 0.927^{+0.093}_{-0.087}(\mathrm{stat})^{+0.036}_{-0.035}(\mathrm{syst}), \\ \mathrm{central-} q^2 \begin{cases} R_K &= 0.949^{+0.042}_{-0.041}(\mathrm{stat})^{+0.022}_{-0.022}(\mathrm{syst}), \\ R_{K^*} &= 1.027^{+0.072}_{-0.068}(\mathrm{stat})^{+0.027}_{-0.026}(\mathrm{syst}). \end{cases} \end{split}$$

central values exhibit the same deficit of muonic decays relative to electronic decays [PRL 128 (2022) 191802]

$B_s \rightarrow \phi \mu^+ \mu^- \text{ and } B_s \rightarrow f_2(1525) \mu^+ \mu^- \text{ decays}$

$B_s \rightarrow \phi \mu^+ \mu^-$ differential branching fractions

[PRL 127 (2021) 151801] $\sqrt{s=7}$, 8 and 13 TeV, $\text{L}=9\,\text{fb}^{-1}$

- Significant discrepancies have been reported in the branching fraction measurements • In q²: 1.0-6.0 GeV²/c⁴ lies >3 σ below SM predictions [JHEP 09 (2015) 179]
- Narrow width of φ allows for a clean selection with low level of backgrounds

• In q²: 1.1-6.0 GeV²/c⁴ 3.6 σ deviation from the SM prediction based on LCSR and lattice QCD

$B_s \rightarrow \phi \mu^+ \mu^-$ angular analysis

 $\begin{array}{c} 140 \\ 120 \\$

100

+ Data - Total PDF Background

[JHEP 11 (2021) 043] $\sqrt{s}=7,\ 8$ and 13 TeV, $\pounds=8.4\,fb^{-1}$

Flavor-symmetric final state, untagged CP-averaged angular decay rate

$$\frac{1}{\mathrm{d}(\Gamma + \overline{\Gamma})/\mathrm{d}q^2} \frac{\mathrm{d}^3(\Gamma + \overline{\Gamma})}{\mathrm{d}\cos\theta_l \,\mathrm{d}\cos\theta_K \,\mathrm{d}\phi} = \frac{9}{32\pi} \bigg[\frac{3}{4} (1 - F_\mathrm{L}) \sin^2\theta_K (1 + \frac{1}{3}\cos2\theta_l) + F_\mathrm{L}\cos^2\theta_K (1 - \cos2\theta_l) + S_3 \sin^2\theta_K \sin^2\theta_l \cos2\phi + S_4 \sin2\theta_K \sin2\theta_l \cos\phi + A_5 \sin2\theta_K \sin\theta_l \cos\phi \bigg]$$

- $+\frac{4}{3}A_{\rm FB}^{CP}\sin^2\theta_K\cos\theta_l + S_7\sin2\theta_K\sin\theta_l\sin\phi$ $+A_8\sin2\theta_K\sin2\theta_l\sin\phi + A_9\sin^2\theta_K\sin^2\theta_l\sin2\phi$
- Two-fold increase in sensitivity (compared to earlier measurement)
- Results are compatible with SM predictions

180 LHCb

-0.5

LHCb

8.4 fb

LHCb

-2

8.4 fb

Candidates / 100 Earlier

Candidates / 0.2 120 120 120

0.6

 $1.1 \le q^2 \le 6.0 \text{ GeV}^2/c^4$

+ Data - Total PDF Background

- Other resonances $f_2(1270)$, $f_0(1500)$, between $\phi(1020)$ and $f'_2(1525)$, have branching fraction of 5% or less into K⁺K⁻ final state
 - \circ f'_2(1525) next best candidate after $\varphi(1020)$
- First observation of $b \rightarrow sll$ involving a spin-2 meson
- Reported with a statistical significance of 9σ (Wilks' theorem)
- Branching fraction in agreement with SM predictions

$$\begin{split} \frac{\mathcal{B}(B^0_s \to f'_2 \mu^+ \mu^-)}{\mathcal{B}(B^0_s \to J/\psi \phi)} &= \mathcal{B}(J/\psi \to \mu^+ \mu^-) \times \frac{\mathcal{B}(\phi \to K^+ K^-)}{\mathcal{B}(f'_2 \to K^+ K^-)} \\ &\times \frac{N_{f'_2 \mu^+ \mu^-}}{N_{J/\psi \phi}} \times \frac{\epsilon_{J/\psi \phi}}{\epsilon_{f'_2 \mu^+ \mu^-}}, \end{split}$$

$$\frac{\mathcal{B}(B_s^0 \to f_2' \mu^+ \mu^-)}{\mathcal{B}(B_s^0 \to J/\psi \phi)} = (1.55 \pm 0.19 \pm 0.06 \pm 0.06) \times 10^{-4},$$

$$\mathcal{B}(B_s^0 \to f_2' \mu^+ \mu^-) = (1.57 \pm 0.19 \pm 0.06 \pm 0.06 \pm 0.08) \times 10^{-7}.$$

$\Lambda_{\rm b} \rightarrow \Lambda(1520)\mu^+\mu^-$ decays

 $\Lambda_{\rm b} \rightarrow \Lambda(1520)\mu^+\mu^-$ decays

[PRL 131 (2023) 151801] $\sqrt{s=7}$, 8 and 13 TeV, $\[mu]{s=9}\]$ fb⁻¹

- $\Lambda_{\rm b} \rightarrow \Lambda \mu^+ \mu^+$ have been observed by the LHCb Collaboration [<u>JHEP 06 (2015) 115</u>]
- Excited $\Lambda(1520)$ has $J^{P}=(3/2)^{-}$ while the ground state Λ has $J^{P}=(1/2)$
 - \circ providing complimentary information to NP
- First measurement of the differential branching fraction of the $\Lambda_h \rightarrow \Lambda \mu^+ \mu^+$ decays

B→Kl⁺l⁻ decays

$\sqrt{s=13}$ TeV, $\&=33.6 fb^{-1}$

$B \rightarrow Kl^+l^-$ decays

- CMS Collaboration: in 2018, deployed novel trigger
 - \circ Enabled collection of unbiased 10¹⁰ b hadron decays
 - B-parking dataset
- Measurement below the SM predictions [arXiv:2401.07090] \circ In q² 1.1-6.0 GeV²/c⁴, $\mathcal{B}(B^+ \to K^+ \mu^+ \mu^-) = (12.42 \pm 0.68) \times 10^{-8}$
- LHCb Collaboration: branching fraction results from R_{κ} analysis. In q^2 1.1–6.0 GeV^2/c^4
 - $\circ \quad \mathcal{B}(B^+ \to K^+ e^+ e^-) = (28.6^{+1.5}_{-1.4} \pm 1.3) \times 10^{-9} \ [\underline{\textit{Nat. Phys. 18, 277-282 (2022)}}]$
 - Combining R_K with dB(B⁺→K⁺μ⁺μ⁻)/dq² [<u>JHEP 06 (2014) 133</u>] $\mathcal{B}(B^+ \to K^+ \mu^+ \mu^-) = (11.86 \pm 0.68) \times 10^{-8}$
- In q² 1.1-6.0 GeV²/c⁴, [<u>PRL 128 (2022) 191802</u>] $\mathcal{B}(B^0 \to K^0 e^+ e^-) = (2.6 \pm 0.6 \pm 0.1) \times 10^{-8}$ and in q² 0.045-6.0 GeV²/c⁴,
 - ${\cal B}(B^+ o K^{*+} e^+ e^-) = (9.2^{+1.9}_{-1.8} ({
 m stat})^{+0.8}_{-0.6} ({
 m syst})) imes 10^{-8}$

First observation for $B^0 o K^0_s e^+ e^-$ with 5.3 σ

$B^+ \rightarrow K^{*+} \mu^+ \mu^-$ angular analysis

• Isospin partner decay of $B \rightarrow K^* \mu^+ \mu^-$ where tension with the SM predictions in the angular observables have been observed [PRL 125 (2020) 011802, JHEP 10 (2018) 047]

• $B \rightarrow K^{*+}\mu^+\mu^-$ decay:

- First measurement of the complete set of angular observables
- K meson reconstructed through the decay chain $K^{*+} \rightarrow K_{s} \pi^{+}$ with $K_{s} \rightarrow \pi^{+} \pi^{-}$
- $B \rightarrow K^{**} \mu^+ \mu^-$ decay rate with $K_{\zeta} \pi^+$ in both P-wave and S-wave configuration

$$\frac{1}{d(\Gamma+\bar{\Gamma})/dq^2} \frac{d^4(\Gamma+\bar{\Gamma})}{dq^2 d\vec{\Omega}}\Big|_P = \frac{9}{32\pi} \left[\frac{3}{4}(1-F_L)\sin^2\theta_K + F_L\cos^2\theta_K + \frac{1}{4}(1-F_L)\sin^2\theta_K\cos 2\theta_\ell - F_L\cos^2\theta_K\sin 2\theta_\ell \cos 2\theta_\ell + S_3\sin^2\theta_K\sin^2\theta_\ell \cos 2\phi + S_4\sin 2\theta_K\sin 2\theta_\ell \cos \phi + S_5\sin 2\theta_K\sin \theta_\ell \cos \phi + \frac{4}{3}A_{\rm FB}\sin^2\theta_K\cos \theta_\ell + S_7\sin 2\theta_K\sin \theta_\ell \sin \phi + S_8\sin 2\theta_K\sin 2\theta_\ell \sin \phi + S_9\sin^2\theta_K\sin^2\theta_\ell \sin 2\phi_\ell}{+\frac{4}{3}A_{\rm FB}\sin^2\theta_K\cos \theta_\ell + S_7\sin 2\theta_K\sin \theta_\ell \sin \phi + S_8\sin 2\theta_K\sin 2\theta_\ell \sin \phi + S_9\sin^2\theta_K\sin^2\theta_\ell \sin 2\phi_\ell}\right]$$

$$\frac{1}{d(\Gamma+\bar{\Gamma})/dq^2} \frac{d^4(\Gamma+\bar{\Gamma})}{dq^2d\vec{\Omega}}\Big|_{P+S} = (1-F_S)\frac{1}{d(\Gamma+\bar{\Gamma})/dq^2}\frac{d^4(\Gamma+\bar{\Gamma})}{dq^2d\vec{\Omega}}\Big|_P + \frac{3}{16\pi}F_S\sin^2\theta_l + \frac{9}{32\pi}(S_{11}+S_{13}\cos 2\theta_l)\cos \theta_K + \frac{9}{32\pi}(S_{14}\sin 2\theta_l + S_{15}\sin \theta_l)\sin \theta_K\cos \phi + \frac{9}{32\pi}(S_{16}\sin \theta_l + S_{17}\sin 2\theta_l)\sin \theta_K\sin \phi,$$

Results

0

0

- LHCb Collaboration at $\sqrt{s=7}$, 8 and 13 TeV, $\mathcal{L}=9fb^{-1}$ [PRL 126 (2021) 161802] . (full set of angular observables)
 - Results confirm the global tension with respect to Ο SM predictions as reported in $B^0 o K^{*0} \mu^+ \mu^-$
 - Largest local discrepancy for P_2 in 6.0-8.0 GeV²/c⁴, Ο 3.0 σ with respect to the SM

Results

[PRL 126 (2021) 161802]

Optimized observables ${\rm P_1}$ to ${\rm P'_8}$ versus ${\rm q^2}$

Short and long-distance contributions in $B^0 \rightarrow K^{*0} \mu^+ \mu^-$

[PRD 109 (2024) 052009, PRL 132 (2024) 131801]

Amplitude analysis

Decay amplitudes

Wilson coefficients Local form factors

$$\mathcal{A}_{\lambda}^{L,R} = \mathcal{N}\left\{ \underbrace{\left[(\mathcal{C}_{9} \pm \mathcal{C}_{9}') \mp (\mathcal{C}_{10} \pm \mathcal{C}_{10}') \right]}_{B} \mathcal{F}_{\lambda}(q^{2},k^{2}) + \frac{2m_{b}M_{B}}{q^{2}} \underbrace{\left[(\mathcal{C}_{7} \pm \mathcal{C}_{7}') \mathcal{F}_{\lambda}^{T}(q^{2},k^{2}) - 16\pi^{2} \frac{M_{B}}{m_{b}} \mathcal{H}_{\lambda}(q^{2},k^{2}) \right]}_{B} \right\}$$

 $C_7^{~SM}$ =-0.337, $C_9^{~SM}$ =4.27, $C_{10}^{~~SM}$ =-4.17 and $C^{'SM}_{~~7,9,10}$ =0 at μ_b =4.2 GeV²c⁻⁴ Local form factors evaluated using LCSR and LQCD techniques

- Non-local contributions from $b
 ightarrow c ar{c} s$ operators [JHEP 09 (2022) 133]
 - \circ ~ isolate ψ_{n} (J/ ψ or $\psi(\text{2S}))$ poles
 - \circ polynomial expansion in terms of conformal variable $z(q^2)$
- K dependence included in the model $A^{L,R}_\lambda o A^{L,R}_\lambda imes f(k^2)$
 - Relativistic Breit-Wigner for P-wave
 - LASS parameterization for S-wave
- Decay rate including P-wave and S-wave amplitudes
 - \circ I_i^S : pure S-wave angular coefficients
 - $\circ \quad extsf{I}^{S}_{i}$: interference terms between S and P-wave amplitudes

 $q^2 \mapsto z(q^2) \equiv \frac{\sqrt{t_+ - q^2} - \sqrt{t_+ - t_0}}{\sqrt{t_+ - q^2} + \sqrt{t_+ - t_0}}$

 λ : polarization of K^{*0} meson L,R: left & right-hand chirality N: normalization factors

$$\mathcal{H}_{\lambda}(z) = \frac{1 - z z_{J/\psi}}{z - z_{J/\psi}} \frac{1 - z z_{\psi(2S)}}{z - z_{\psi(2S)}} \hat{\mathcal{H}}_{\lambda}(z)$$

$$\hat{\mathcal{H}}_{\lambda}(z) = \phi_{\lambda}^{-1}(z) \sum_{k} lpha_{\lambda,k} z^{k}$$

$$\begin{pmatrix} \frac{32\pi}{9} \frac{\mathrm{d}^{5}\Gamma}{\mathrm{d}q^{2}\mathrm{d}k^{2}\mathrm{d}\vec{\Omega}} = \frac{32\pi}{9} \frac{\mathrm{d}^{5}\Gamma^{\mathrm{P}}}{\mathrm{d}q^{2}\mathrm{d}k^{2}\mathrm{d}\vec{\Omega}} + (I_{1c}^{S} + I_{2c}^{S}\cos 2\theta_{\ell}) \\ + (\tilde{I}_{1c} + \tilde{I}_{2c}\cos 2\theta_{\ell})\cos\theta_{K} \\ + (\tilde{I}_{4}\sin 2\theta_{\ell} + \tilde{I}_{5}\sin\theta_{\ell})\sin\theta_{K}\cos\phi \\ + (\tilde{I}_{7}\sin\theta_{\ell} + \tilde{I}_{8}\sin 2\theta_{\ell})\sin\theta_{K}\sin\phi, \end{cases}$$

Analysis overview

• The absolute scale of the Wilson coefficients set by the branching fraction of the decay

$$\mathcal{B}(B^0 \to K^{*0} \mu^+ \mu^-) = \frac{\tau_B}{\hbar} \int_{q_{\min}^2}^{q_{\max}^2} \int_{k_{\min}^2}^{k_{\max}^2} \frac{\mathrm{d}^2 \Gamma}{\mathrm{d}q^2 \mathrm{d}k^2} \mathrm{d}q^2 \mathrm{d}k^2$$

- Extended unbinned maximum likelihood fit to q^2 , k^2 , $\cos\theta_1$, $\cos\theta_K$, Φ and $m(K\pi\mu\mu)$ \circ C_9 , C'_9 , C_{10} and C'_{10} fit parameters \circ C_7 and C'_7 fixed from SM
- The signal yield is normalized to ${\sf B}^0{\rightarrow}{\sf J}/\psi{\sf K}\pi$

$$N_{\rm sig} = N_{J/\psi K\pi} \times \frac{\mathcal{B}(B^0 \to K^{*0}\mu^+\mu^-) \times \frac{2}{3}}{\mathcal{B}(B^0 \to J/\psi K^+\pi^-) \times f^{J/\psi K\pi} \times \mathcal{B}(J/\psi \to \mu^+\mu^-)} \times R_{\varepsilon}$$

2011, 2012 and 2016 dataset, \pounds =4.7 fb $^{-1}$

Results: local form factors

• The ratio takes lower values with respect to the theoretical predictions

Results: non-local form factors

R. Raturi

Results: P'_5 and P'_6

- Non-local hadronic contributions are responsible for the positive shift In P',
- A good agreement observed between the angular observables obtained with the binned analysis [PRL 125 (2020) 011802]
- Discrepancy in P due to imaginary part of nonlocal $H_{_{\!\!\lambda}}(q^2)$

Recent results

[EPJC (2023) 83:648]

- Updated form factors resulting in reduction of uncertainties
- Using the latest experimental results from LHCb and CMS Collaborations
- Changes observed in the SM predictions:
 - $\circ~~R_{\kappa}$ and $R_{\kappa\star}$ are in excellent agreement with the SM
 - Previous deviations due to statistical fluctuations and systematic effects from e modes
 - More precise branching fractions in low-q² for B+Kl⁺l⁻ modes $\mathcal{O}(30\%) \to \mathcal{O}(10\%)$
 - Increase in tension $B(B \rightarrow K\mu^+\mu^-)$ with experimental results upto 4σ
 - \circ Uncertainties in branching fractions of $B{\rightarrow}K^*l^+l^-$ reduced by half
 - Compatible with experimental results
 - Optimized observables:
 - Central values shift towards experimental values
 - Uncertainties remain unchanged
 - Reduction in tension for $P_5'(B^0 \to K^{*0}\mu^+\mu^-)$ from 2.7 σ (2.9 σ) to 1.9 σ (1.9 σ) in q² 4-6(6-8) GeV²/c⁴

- Recent results from $b \rightarrow sl^+l^-$ transitions were presented for:
 - Lepton Universality
 - Branching fractions
 - Angular analysis
- LFU ratios are in excellent agreement with the SM
 - Earlier tension due to e modes
- Tension in the branching fractions remain
 - $\circ~$ B(B+K $\mu^{\scriptscriptstyle +}\mu^{\scriptscriptstyle -})$ due to form factors based on lattice QCD ~4\sigma
 - $B(B_{s} \rightarrow \phi \mu^{+} \mu^{-})$ in low-q² >3 σ
- Tension on P decreases to $\sim 2\sigma$
 - \circ updated form factors from LCSR
- First unbinned amplitude analysis of the decay $B^0{\rightarrow}K^{*0}\mu^{+}\mu^{-}$
- Future measurements in $b \rightarrow sll$ to may provide additional support to the deviations observed

BackUp