

Neutrino oscillation with global data analysis Jian Tang (SYSU, China) tangjian5@mail.sysu.edu.cn FPCP2024 @ Chulalongkorn University, Bangkok, Thailand Collaborators: Yong Du, Hao-Lin Li, Jiang-Hao Yu, Zhuo-Jun Hu, Jia-Jie Ling, Hai-Xing Lin, Pedro Pasquini, Sampsa Vihonen, Tse-Chun Wang, Bing-Long Zhang *Ref: JHEP01(2021)124; JHEP03(2021)019; Phys.Rev.D 105 (2022) 7, 075022; Phys.Rev.D 105 (2022) 9, 096029; Phys.Rev.D 108 (2023) 6, 062004; arXiv:2312.11704; arXiv: 2403.05819*

- Motivations
- Non-unitarity(NU) v.s non-standard interactions(NSIs)
- Global fits of mixing parameters without unitarity
- Constraints of NSIs based on SMEFT
- Summary

Where are neutrinos from?

5/27/2024 Jian Tang

3

Energy spectra of various neutrino sources

Ref: Edoardo Vitagliano, Irene Tamborra, and Georg Raffelt. Grand Unified Neutrino Spectrum at Earth: Sources and Spectral Components. Rev. Mod. Phys., 92:45006, 2020.

Ref: Edoardo Vitagliano, Irene Tamborra, and Georg Raffelt. Grand Unified Neutrino Spectrum at Earth: Sources and Spectral Components. Rev. Mod. Phys., 92:45006, 2020.

Energy spectra of reactor & atm. neutrinos

Ref: Edoardo Vitagliano, Irene Tamborra, and Georg Raffelt. Grand Unified Neutrino Spectrum at Earth: Sources and Spectral Components. Rev. Mod. Phys., 92:45006, 2020.

Jian Tang

Energy spectra of SN neutrino sources

Ref: Edoardo Vitagliano, Irene Tamborra, and Georg Raffelt. Grand Unified Neutrino Spectrum at Earth: Sources and Spectral Components. Rev. Mod. Phys., 92:45006, 2020.

Energy spectra of DSNB neutrino sources

Ref: Edoardo Vitagliano, Irene Tamborra, and Georg Raffelt. Grand Unified Neutrino Spectrum at Earth: Sources and Spectral Components. Rev. Mod. Phys., 92:45006, 2020.

Jian Tang

Three-generation neutrino oscillations

$$
U_{PMNS} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & c_{23} & s_{23} \\ 0 & -s_{23} & c_{23} \end{pmatrix} \begin{pmatrix} c_{13} & 0 & s_{13}e^{-i\delta} \\ 0 & 1 & 0 \\ -s_{13}e^{i\delta} & 0 & c_{13} \end{pmatrix} \begin{pmatrix} c_{12} & s_{12} & 0 \\ -s_{12} & c_{12} & 0 \\ 0 & 0 & 1 \end{pmatrix}.
$$

\n
$$
P_{\alpha\beta} = \delta_{\alpha\beta} - 4 \sum_{i < j}^{n} \text{Re}[U_{\alpha i}^{\star} U_{\beta i} U_{\alpha j} U_{\beta j}^{\star}] \sin^{2} \left(\frac{\Delta_{ij}}{2}\right) + 2 \sum_{i < j} \text{Im}[U_{\alpha i}^{\star} U_{\beta i} U_{\alpha j} U_{\beta j}^{\star}] \sin (\Delta_{ij})
$$

\n
$$
U^{\dagger} U = 1 \qquad \frac{\Delta_{ij}}{2} = 1.27 \frac{m_{i}^{2} - m_{j}^{2}}{eV^{2}} \frac{L/E}{Km\text{GeV}}
$$

\n• $\Delta m_{ij}^{2} = m_{i}^{2} - m_{j}^{2}$ The mass differences
\n• *U* distance *V* source to detector (and Dirac phases)
\n• For 3 v framework, we have 6+1 free parameters in neutrino oscillations:
\n
$$
P(\theta_{12}, \theta_{13}, \theta_{23}, \delta, \Delta m_{21}^{2}, \Delta m_{31}^{2}) + \rho (\text{in matter})
$$

\n
$$
\sqrt{\frac{1}{2}} \
$$

5/27/2024 Jian Tang

9

Working principles of neutrino oscillation experiments

- Get the neutrino source as clean as possible. Muon decay v.s pion decay beams.
- Deploy the best detector to reconstruct the oscillated neutrino spectra: Gd-WC, LAr TPC, scintillator detector with flavour&charge identifications…
- 5/27/2024 Jian Tang Data mining: precision measurement & discovery of new physics...

An example: T2K

K. McFarland, Neutrino Interaction Uncertainties @ NNN2018

Lots of neutrino experiments to get a new horizon

WC detectors: Kamiokande→**SK**→**HyperK**

• Bigger than bigger! PMT technology revolutionized!

3 kton WC 20% coverage with 20" PMT

50 kton WC 40% coverage with 20'' PMT

260 kton WC 40% coverage with 20 "+HQE PMT

- **Construction started in 2020.**
- **Data taking from 2027.**
- **J-PARC neutrino beam will be upgraded from 0.7 to 1.3 MW**

LAr TPC: DUNE

LSc: DYB $(20 t * 8)$ \rightarrow **JUNO** $(20 kt)$

• Daya Bay neutrino experiment: mission completed!

Hot topics in neutrino oscillation physics

- What is the neutrino mass ordering?
- Are there CP violations in the lepton sector?
- How much precision shall we reach to tell new physics?
- What are the current and future systematic limitations on precision measurement and how to address them?
- Is the neutrino mixing matrix unitary?
- Are there non-standard neutrino interactions?
- Are there more than three-flavor neutrinos?
- Reactor antineutrino flux deficit seems resolved. How about Gallium anomaly?
- How consistent are results from NOvA and T2K?
- How to examine neutrino mass models based on flavor symmetries (A4, S4, Modular…)?
- What's next even after neutrino mass ordering and Dirac CP phase?

• …

Simulations of neutrino oscillations w/o new physics

• Motivations

- Non-unitarity(NU) v.s non-standard interactions(NSIs)
- Global fits of mixing parameters without unitarity
- Constraints of NSIs based on SMEFT
- Future prospects

Non-unitary neutrino mixings (NU)

• Light sterile neutrino anomaly (eV scale)

- Heavy sterile neutrinos from see-saw model (GeV scale)
- Dark matter candidate (keV) scale)
- **IUV** (indirect unitary violation) by heavy sterile neutrinos

DUV (direct unitary violation) by light sterile neutrinos: oscillation with active ones

- Simplifying the mixing matrix to deal with DUV and IUV, Phys. Lett., B718:1447-1453, 2013
- Pertubation study of oscillation probabilities for DUV and IUV, Phys. Rev., D93(3):033008

- **New physics beyond SM: new particles, new couplings, new phenomenon...**
	- Flavor violating interactions with neutrinos: $\nu_{\alpha} f \rightarrow \nu_{\beta} f_{\alpha} l_{\alpha}^{-} \rightarrow \nu_{\beta} e^{-} \bar{\nu}_{e} \cdots$
	- 4-fermion vertices: $L_{\text{eff}} = 2\sqrt{2} G_F \left(\epsilon^{L/R}\right)_{\beta\delta}^{\alpha\gamma} \left(\bar{\nu}^{\beta}\gamma^{\rho}P_L\nu_{\alpha}\right) \left(\bar{\ell}^{\delta}\gamma^{\rho}P_{L/R}\ell_{\gamma}\right)$

NSI happens to neutrino propagation in matter NSI at neutrino productions

Constraints on flavor-symmetry neutrino models

Test of neutrino models based on flavor symmetries

• Motivations

- Non-unitarity (NU) v.s non-standard interactions (NSIs)
- Global fits of mixing parameters without unitarity
- Constraints of NSIs based on SMEFT
- Future prospects

No unitarity assumption here!

 $U_{e1}U_{\mu2}^* + U_{e2}U_{\mu2}^* + U_{e3}U_{\mu3}^* = 0$

- Reduced constraints without the unitary assumption in the quark mixing.
- Let's keep the democratic way in quark and lepton mixing?

Simple mathematics w/o unitarity assumption

Now we have 13 real parameters after rephrasing fields for NU!

What if there is non-unitary mixing?

$$
U^{\text{NU}} = \begin{pmatrix} |U_{e1}|e^{i\phi_{e1}} & |U_{e2}|e^{i\phi_{e2}} & |U_{e3}| \\ |U_{r1}| & |U_{r2}| & |U_{r3}| \end{pmatrix} \qquad P^{\text{NU}}_{\nu_{\alpha} \to \nu_{\beta}} = \begin{vmatrix} \sum U_{\beta i}^* U_{\alpha i} \\ \sum U_{\beta i} U_{\alpha i} \end{vmatrix}^2 - 4 \sum_{i < j} \Re \left(U_{\alpha i} U_{\beta j} U_{\alpha j}^* U_{\beta i}^* \right) \sin^2 \left(\frac{\Delta m_{ji}^2 L}{4E_{\nu}} \right) \\ + 2 \sum_{i < j} \Im \left(U_{\alpha i} U_{\beta j} U_{\alpha j}^* U_{\beta i}^* \right) \sin \left(\frac{\Delta m_{ji}^2 L}{2E_{\nu}} \right),
$$
\n
$$
\frac{\text{Type} \qquad \text{Exps}}{\text{Double Chooz}} \qquad \frac{\text{EESO, Daya Bay}}{\text{Double Chooz}} \qquad \frac{4|U_{e3}|^2 (|U_{e1}|^2 + |U_{e2}|^2)}{4|U_{e1}|^2 |U_{e2}|^2} \qquad \frac{\text{O.7}}{\Delta} \qquad \frac{\text{O.7}}{\Delta} \qquad \frac{\text{O.8}}{\Delta} \qquad \frac{\text{O.9}}{\Delta} \qquad \frac
$$

- Correlations between 3nu mixing matrix elements without unitarity assumption.
- Octant degeneracies get worse for NU.

$$
\overline{5/27/2024}
$$

Jian Tang

 $U_{\mu3}$

 0.65

 $\overline{0.2}$

 $-|U_{\mu 3}|^2=0.5$

 0.3

 0.4

 $|U_{\mu1}|$

 0.7

 $-|U_{\mu 3}|^2=0.5$

 0.6

 $|U_{\mu2}|$

 0.5

 0.5

What if there is non-unitary mixing?

Tau neutrino physics are to be improved for better constraints on 3rd row/column!

• Motivations

- Non-unitarity (NU) v.s non-standard interactions (NSIs)
- Global fits of mixing parameters without unitarity
- Constraints of NSIs based on SMEFT
- Future prospects

Working principle of effective field theory (EFT)

EFT: connecting low-energy phenomenon to high-energy scale

Funded project in collaboration with **Jiang-Hao Yu**, **Ning-Qiang Song** and **Guang Li**!

EFT: connecting low-energy phenomenon to high-energy scale

SMEFT-NSIs by T2K and NOvA

T2K and NOvA are already sensitive to new physics around 20 TeV.

• Correlations among different dimension-6 operators play important roles.

SMEFT-NSIs by reactor neutrino experiments

Reactor neutrino experiments are sensitive to new physics around 5 TeV.

• Complementarity between LBL and reactor expts due to different sets of operators

- Motivations
- Non-unitarity (NU) v.s non-standard interactions (NSIs)
- Global fits of mixing parameters without unitarity
- Constraints of NSIs based on SMEFT
- Future prospects on SMEFT-NSIs

 $\mathcal{O}_{1,2,3,4}^{\text{CKM}} = \Gamma(K \to \mu\nu_\mu)/\Gamma(\pi \to \mu\nu_\mu)$, $Br(B \to X_c e\nu)$, $Br(B^+ \to \tau\nu)$, $\Delta M_d/\Delta M_s$.

SMEFT-NSIs by T2HK and DUNE

• Cover 1635 SMEFT operators in dimention-6. ND is important to constraint SMEFT-NSIs.

• DUNE has better sensitivity than T2HK due to the longer baseline.

SMEFT-NSIs by JUNO w/o TAO and COHERENT

J. Tang, B. L. Zhang, Phys.Rev.D 108 (2023) 6, 062004 J. Tang, B. L. Zhang, arXiv: [2403.05819](https://arxiv.org/abs/2403.05819), <https://github.com/zhangblong/DistinctionLimit>

Summary

- Neutrino oscillation is the first direct evidence BSM.
- Discovery of CPV & determination of MH is around the corner. Neutrino will be used for new physics searches.
- New physics might be hidden in the uncertainties.
- Unitary mixing should not be taken by default, as tau neutrino-related part is yet to be improved.
- We can have better knowledge of underlying theory by RGE running and matching in different scales to connect the lowenergy neutrino oscillation experiments and the UV completion model in SMEFT.
- Let's work together to discover new physics with neutrinos...

- 1. One to work on neutrino physics, such as neutrino scattering or data analysis for JUNO OSIRIS with German colleagues.
- 2. The other to work on muon physics and its applications
- \blacklozenge Salary: ~50 k Euros/year + bonus + on-campus apartment.
- ◆Application packages: CV, publication list, research statement, two reference letters to email: <u>tangjian5@mail.sysu.edu.cn</u>
- ◆Remote interview might happen soon after a complete application package is received.
- ◆Deadline: June 30, 2024.

THANK YOU

• Start from a UV theory

 $\Delta \mathcal{L} = (D_{\mu} H_2^{\dagger})(D^{\mu} H_2) - M^2 |H_2|^2 - Y \overline{L}_i H_{2i} e_R - Y^* \overline{e_R} H_{2i}^{\dagger} L_i$

- Matching by covariant derivative expansion, EoM $(D^2H_2)_i + M^2H_{2i} = -Y^* \overline{e_R} L_i$ $(D^2H_2^{\dagger})_i + M^2H_{2i}^{\dagger} = -Y\overline{L}_i e_R$ $(D_{ij}^2 + M^2 \delta_{ij}) H_{2j} = -Y^* \overline{e_R} L_i$ $(D_{ij}^2 + M^2 \delta_{ij}) H_{2j}^{\dagger} = -Y \overline{L_i} e_R$
- Solve for classical solution

$$
H_{c,2i} = -(D_{ij}^2 + M^2 \delta_{ij})^{-1} Y^* \overline{e_R} L_j
$$

= $-\frac{1}{M^2} \left(1 + \frac{D^2}{M^2}\right)_{ij}^{-1} Y^* \overline{e_R} L_j$ $H_{c,2i}^{\dagger} = -\frac{1}{M^2} Y \overline{L}_i e_R + \mathcal{O}(\frac{1}{M^4})$
= $-\frac{1}{M^2} Y^* \overline{e_R} L_i + \mathcal{O}(\frac{1}{M^4})$

• Put the classical solution back to Lagrangian density $(D_{\mu}H_{2,c}^{\dagger})(D^{\mu}H_{2,c})=-H_{2,c}^{\dagger}D^{2}H_{2,c}\sim\mathcal{O}(\frac{1}{M^{4}})$

$$
-M^2|H_{2,c}|^2=-\frac{|Y|^2}{M^2}\overline{L}_i e_R \overline{e_R}L_i
$$

$$
-Y\overline{L}_i H_{2i,c} e_R - Y^* \overline{e_R} H_{2i,c}^\dagger L_i = \frac{2|Y|^2}{M^2} \overline{L}_i e_R \overline{e_R} L_i
$$
Not in

$$
\mathcal{L}_{eff}^{dim-6} = \frac{|Y|^2}{M^2} \overline{L}_i e_R \overline{e_R} L_i
$$
 Warsaw Basis

• Fierz transformation to Warsaw basis

$$
\frac{|Y|^2}{M^2} \overline{L}_i e_R \overline{e_R} L_i = \underbrace{\left(\frac{|Y|^2}{2M^2}\right)}_{C_{le}} \overline{L}_i \gamma^\mu L_i \left(\overline{e_R} \gamma^\mu e_R\right)
$$
SMEFT at scale M

$$
C_{le} = \frac{|Y|^2}{2M^2} \qquad Q_{le}
$$

$$
\mu \frac{\mathrm{d}}{\mathrm{d}\mu} C_i = \sum_j \gamma_{ij} C_j
$$

- Probably generate non-zero Wilson coefficients other than C_{1e}
- Matching at electroweak scale to LEFT

$$
L_p = \begin{bmatrix} \nu_p \\ e_p \end{bmatrix}
$$

$$
\frac{Y_{ps}Y_{tr}^{\dagger}}{2M^2}(\overline{L}_i^p \gamma^\mu L_i^r)(\overline{e_R^s} \gamma^\mu e_R^t) = \frac{Y_{ps}Y_{tr}^{\dagger}}{2M^2}(\overline{\nu_L}^p \gamma^\mu \nu_L^r + \overline{e_L}^p \gamma^\mu e_L^r)(\overline{e_R^s} \gamma^\mu e_R^t)
$$

$$
= \frac{\left(Y_{ps}Y_{tr}^{\dagger}\right)(\overline{\nu_L}^p \gamma^\mu \nu_L^r)(\overline{e_R^s} \gamma^\mu e_R^t)}{2M^2} + \frac{\left(\overline{e_L}^p \gamma^\mu e_L^r\right)(\overline{e_R^s} \gamma^\mu e_L^t)(\overline{e_R^s} \gamma^\mu e_R^t)}{\mathcal{O}_{\nu e}^{V,LR}}
$$

Matching between QM and QFT NSIs

• QM NSIs are fully independent without much info

about the underlying theory.

• QFT NSIs allow their correlations.

concrete