Progress of the Super Tau-Charm Facility (STCF) in China

Qipeng Hu (胡启鹏)

University of Science and Technology of China On behalf of the STCF Working Group

22nd Conference on Flavor Physics and CP Violation (FPCP 2024) Chulalongkorn University, Bangkok, Thailand

Physics at the Tau-Charm Energy Region

Qipeng Hu, USTC, FPCP 2024

Tau-charm energy region

2-7 GeV at e⁺e⁻ collider

- Transition region between perturbative and non-perturbative QCD
- Pair production of hadrons and τ 's at threshold
- Rich resonant structures, large production cross-sections for charmonium states and charmonium-like exotics

- Hadron fragmentation
- New XYZ particle
- Hidden-charm pentaquark
- Di-charmonium state
- Charm baryons

History of Tau-Charm Colliders*

ADONE, Fracscati <mark>'69 - '9</mark>3

BEPC, IHEP, '90 - '04 $5 \times 10^{30} \text{ cm}^{-2} \text{ s}^{-1}$

VEPP-4M

CBS facility

*not a inclusive list of all colliders

Qipeng Hu, USTC, FPCP 2024

BEPCII, IHEP, '08 - now $1 \times 10^{33} \text{ cm}^{-2} \text{ s}^{-1}$

VEPP-4M, BINP, '02 - '12

Fruitful BEPCII/BESIII Results

- Only current machine running in the Tau-Charm energy region: **BEPCII / BESIII**, playing a leading role in taucharm physics
- BEPCII/BESIII have run over 15 years. Limited by length of storage ring and tunnel space, no potential for another major upgrade

The Three Generations of e⁺e⁻ Colliders

Chinese proposal for 3rd generation tau-charm factory — Super Tau-Charm Facility (STCF) \bullet - a natural extension and a viable option for a post-BEPCII HEP project

Super Tau-Charm Facility (STCF) in China

- \bullet

Qipeng Hu, USTC, FPCP 2024

• Funded R&D: 0.4 Billion CNY funded by the Anhui government Construction budget: 4.5 Billion CNY

High Statistical Data Samples at STCF

Expected sample size per year

Table 1: The expected numbers of events per year at different STCF energy points.					
CME (GeV)	Lumi (ab ⁻¹)	samples	$\sigma(nb)$	No. of Events	remark
3.097	1	J/ψ	3400	3.4×10^{12}	
3.670	1	$\tau^+\tau^-$	2.4	2.4×10^{9}	
		ψ(3686)	640	6.4×10^{11}	
3.686	1	$\tau^+\tau^-$	2.5	2.5×10^{9}	
		$\psi(3686) \to \tau^+\tau^-$		2.0×10^{9}	
		$D^0 ar{D}^0$	3.6	3.6×10^{9}	
		$D^+ \bar{D}^-$	2.8	2.8×10^{9}	
3.770	1	$D^0 ar D^0$		7.9×10^{8}	Single Tag
		$D^+ \bar{D}^-$		5.5×10^{8}	Single Tag
		$\tau^+\tau^-$	2.9	2.9×10^{9}	
		$D^{*0}\bar{D}^{0} + c.c$	4.0	1.4×10^{9}	$CP_{D^0\bar{D}^0} = +$
4 000	1	$D^{*0}\bar{D}^{0} + c.c$	4.0	2.6×10^{9}	$CP_{D^0\bar{D}^0} = -$
4.009	1	$D_s^+ D_s^-$	0.20	2.0×10^{8}	
		$\tau^+\tau^-$	3.5	3.5×10^{9}	
		$D_{s}^{+*}D_{s}^{-}+\text{c.c.}$	0.90	9.0×10^{8}	
4.180	1	$D_{s}^{+*}D_{s}^{-}+\text{c.c.}$		1.3×10^{8}	Single Tag
		$\tau^+\tau^-$	3.6	3.6×10^{9}	
		$J/\psi \pi^+\pi^-$	0.085	8.5×10^{7}	
4.230	1	$\tau^+\tau^-$	3.6	3.6×10^{9}	
		$\gamma X(3872)$			
4 360	1	$\psi(3686)\pi^{+}\pi^{-}$	0.058	5.8×10^{7}	
4.500	1	$\tau^+ \tau^-$	3.5	3.5×10^{9}	
4 420	1	$\psi(3686)\pi^{+}\pi^{-}$	0.040	4.0×10^{7}	
4.420	1	$\tau^+\tau^-$	3.5	3.5×10^{9}	
4 630		$\psi(3686)\pi^{+}\pi^{-}$	0.033	3.3×10^{7}	
4.050	1	$\Lambda_c \bar{\Lambda}_c$	0.56	5.6×10^{8}	
	1	$\Lambda_c \bar{\Lambda}_c$		6.4×10^{7}	Single Tag
		$\tau^+\tau^-$	3.4	3.4×10^{9}	
4.0-7.0	3	300 points scan with 10 MeV step, 1 fb ⁻¹ /point			
> 5	2-7	several ab ⁻¹ high energy data, details dependent on scan results			

ullet

Qipeng Hu, USTC, FPCP 2024

STCF (per year) vs. BEPCII (per year) vs. superKEKB (full)

STCF is not only a tau-charm factory but also a super factory for XYZ particles, hyperons and light hadrons

Physics Opportunities: XYZ states

- QCD allows combinations of multi-quarks and gluons
- Spectrum above open charm is significantly overpopulated with exotic states
- STCF offers unique advantages for studying exotic hadrons and searching new ones (large luminosity and high efficiency)

Physics Opportunities: CP Violation

- CPV observed in K, B, D mesons, all are consistent with CKM theory in SM
- Baryon asymmetry of the Universe suggests the existence of non-SM CPV source(s)

 STCF is capable of searching for CPV in hyperon and *τ*, and CPTV in *K* with high sensitivity

Physics Opportunities: Precisions and Sensitivities

 STCF is expected to improve the current precisions of many important measurements by ~1 order of magnitude and enhance sensitivities to various rare or forbidden decays by ~2 orders of magnitude.

Physics Opportunities: Beyond What I Can Cover Here

- Nuclear EM form factors
- Fragmentation functions
- And more ...

CP	in charmed k	baryon			
ar-thresho	ld resonance	9			
	Triangle sing	gularity	Tau ED	M	
decay	Hyperon-	Nucleus S	Scatterir	ng	
one distrib	oution ampli [.]	tudes ^l	Millichar	ged particle	S
meson mix	ing Spir	n 3/2 pola	arization		
				QCD sum ru	les
$(I_z^2) \qquad \Lambda - \Lambda$	oscillation	Axion	-like pai	rticle	cLFV
Jarks	SU(2) _L -sing	let vecto	r-like fe	rmion partn	ers
otonic hyp	eron decay	Hyperor	ם EDM	X(4014)	
e radius	Coupled	l-channel	effect		
10)	Invisible de	cay of J/p	osi		

Status of STCF project with a focus on progress since last FPCP

FPCP2023 STCF report

Tentative Project Schedule for STCF

Key Technology R&D — Research Team

Qipeng Hu, USTC, FPCP 2024

Hefei Institutes of Physical Science, CAS University of Science and Technology of China Anhui University of Science and Technology

Tsinghua U.

University of Chinese Academy of Science University of Science and Technology Beijing

Dalian Institute of Chemical Physics, CAS

Shandong U.

Shanghai Advanced Research Institute, CAS Fudan U.

Zhejiang U.

Huazhong University of Science and Technolog Central China Normal U.

Hunan University of Science and Technology

University of South China

Sun Yat-sen U. Shenzhen Technology U.

STCF Accelerator Design

STCF schematic layout

Qipeng Hu, USTC, FPCP 2024

STCF Accelerator R&D — Machine Parameters

		Tau-Charm Factory		B Factory		Z Factory	
Parameters	Units	BINP-SCTF (2018)	STCF (April. 2024)	SuperKEKB LER(e+)	SuperKEKB HER(e-)	FCC-ee Z	CEPC Z (2022)
Optimal beam energy, E	GeV	2	2	4	7.007	45.6	45.5
Circumference, C	m	813.1	848.4	3016.3	3016.3	97756	100000
Crossing angle, 2q	mrad	60	60	83	83	30	33
Horizontal emittance, e x	nm	8	6.919	3.2	4.6	0.27	0.27
Coupling, k		0.50%	0.50%	0.27%	0.25%	0.37%	0.52%
Vertical emittance, e y	pm	40	34.595	8.64	11.5	1.00	1.40
Ver. beta function at IP, β_y	mm	0.8	0.6	0.27	0.3	0.8	0.9
Ver. beam size at IP, s y	mm	0.179	0.144	0.048	0.059	0.028	0.035
Beam current, <i>I</i>	А	1.7	2	3.6	2.6	1.39	1.3392
Single-bunch charge	nC	11.36	8.04	14.49	10.46	27.24	22.43
SR power per beam, P sr	MW	0.6137	0.572	6.732	6.37	50.04	49.5504
Bunch length, s z	mm	10.00	8.43	6.00	5.00	12.12	8.70
Ver. beam-beam parameter, ξ_y		0.121	0.094	0.083	0.074	0.133	0.125
Luminosity, <i>L</i>	10 ³⁵ cm ⁻² s ⁻¹	1.01	1.19	8.4	8.6	21.5	17.6

Qipeng Hu, USTC, FPCP 2024

Preliminary machine parameters

- Preliminary lattice for 850 m
- Simulated luminosity: 1.2 x 10³⁵ cm⁻² s⁻¹

STCF Accelerator R&D — Hardware

- \bullet building prototype
- **IR SC magnet:** Comparing DCT, CCT and cos20, prototype to be built lacksquare
- **Injector kicker:** High-rep (50 Hz), super fast kicker (bottom < 4 ns) lacksquare

 \bullet

. . .

Multi-wire nonlinear kicker

BINP/SCTF IR SC magnet prototype

Qipeng Hu, USTC, FPCP 2024

Collider Ring RF cavity: Compared RT and SC cavities, now prefer RT cavity TM020 by Spring-8 (J-PAC),

Spring-8 TH020 RT RF Cavity

STCF Accelerator R&D — Team and Plan

- Accelerator division established in 2023 receiving strong backing from the National Synchrotron Radiation Lab (NSRL)
- Manpower: ~ 90 persons, with 50% students, and continue to expand
- Pre-CDR to be released by the end of 2024, CDR by 2025

Qipeng Hu, USTC, FPCP 2024

NSRL-led STCF e+ and e- test facility construction

- Located in HALF site
- Begin operations in 2026
- Feature ~100 MeV e⁻ and e⁺ beams

STCF Detector Design

STCF detector cross-section

- Highly efficient and precise reconstruction of exclusive final states
- Precise measurement of low-p particles (< 1 GeV/c
- Outstanding PID: π/K and μ/π separation up to 2 GeV •

Qipeng Hu, USTC, FPCP 2024

Super Tau-Charm Facility

82 institutions.

53 authors 2 springer

STCF

STCF Detector R&D — Detector Prototypes

Qipeng Hu, USTC, FPCP 2024

STCF Detector R&D — Trigger, DAQ and Software

Schematic STCF trigger systems

- Peak Lumi: event rate ~ 400 kHz, Raw data bandwidth > 200 GB/s
- Hardware trigger + software trigger
- Triggered data bandwidth ~ 30 GB/s

- STCF experiment core software: OSCAR
- Developed using the light-weight and flexible SNiPER framework and adopted some state-of-the-art technologies
- Full chain of STCF detector data processing is established

Conferences/Workshops for STCF

(Domestic) STCF Workshops

Time	Place	Content
2018.10	Hengyang (USC)	STCF
2019.03	Beijing (UCAS)	STCF: Physics
2019.07	Hefei (USTC)	STCF: Accelerator
2019.08	Hefei (USTC)	STCF: Phys. & simulations
2019.11	Beijing (UCAS)	STCF: CDR
2020.08	Hefei (USTC)	STCF: From CDR to TDR
2022.12	Guangzhou (SYSU)	STCF: R&D kick-off
2023.07	Zhengzhou (ZZU)	STCF: Collaboration
2024.07	Lanzhou (LZU)	(scheduled)

STCF Project Development Meetings

	Time	Place	Meetings
2	2022.04	Hefei (USTC)	STCF Key Technology R&D Project Demon
2	2023.08	Hefei (USTC)	STCF Key Technology R&D Project Kick-of
2	2023.12	Hefei (USTC)	STCF Key Technology R&D Project Budget
2	2024.01	Hefei (USTC)	STCF 1 st International Advisory Committee
2	2024.05	Hefei (USTC)	STCF 1 st National Consultative Committee

Qipeng Hu, USTC, FPCP 2024

STCF workshop 2022, online

STCF workshop 2023, Zhengzhou

STCF 1st IAC meeting (Hefei, 2024)

- stration Meeting
- ⁱ Meeting
- Review Meeting
- Meeting
- Meeting

International Future Tau-Charm Facility Workshops

Time	Place	Content
2015.01	Hefei, China	International Workshop focused on Super
2018.03	Beijing, China	International Workshop focused on Super
2018.05	Novosibirsk, Russia	International Workshop focused on Super
2018.12	Paris, France	1 st FTCF (Joint Internationa
2019.08	Moscow, Russia	2nd FTCF
2020.11	Online, China	3rd FTCF
2021.11	Online, <mark>Russia</mark>	4 th FTCF
2024.01	Hefei, China	5 th FTCF

Qipeng Hu, USTC, FPCP 2024

tau-Charm Facility in China

tau-Charm Facility in China

tau-Charm Facility in Russia

al Workshop)

FTCF2024-Guangzhou

- The 6th International Workshop on Future Tau Charm Facilities (FTCF2024-Guangzhou)
- will be hosted by Sun Yat-sen University (SYSU), in Guangzhou, China, Nov. 17 21, 2024

https://indico.pnp.ustc.edu.cn/event/1948/

Qipeng Hu, USTC, FPCP 2024

m Facilities (**FTCF2024-Guangzhou**) Guangzhou, China, **Nov. 17 - 21, 2024**

Qipeng Hu, USTC, FPCP 2024

Summary

- ٠ potential for breakthroughs
- The STCF project is in the R&D stage with strong backing from local governments •
- ٠ (2026 - 2030)
- ۲ to all forms of collaboration

Thank you 20191918

STCF is a viable medium-term HEP project in China with excellent value-to-cost ratio and great physics

Aiming to submit a proposal to the central government in 2025 for inclusion in the 15th five-year plan

Expanding international collaboration and exploring synergies with other projects is crucial. We are open

Backup Slides

超级陶粲装置 Super Tau-Charm Facility

. L

STCF Project Development

Qipeng Hu, USTC, FPCP 2024

- Chinese Academy of Sciences, 2021-2026, International Partnership program, 5.0 M RMB
- Ministry of Science and Technology, 2022-2027, National Key R&D Program of China, 17.5 M RMB
- **National Natural Science Foundation of** China, 2024-2027, Group of Key Projects, 14.0 M RMB

2022.4

STCF Project Development

Qipeng Hu, USTC, FPCP 2024

ITK • <~ $0.3\% X_0$ / layer • σ_{xy} <~ 100 µm	Cylindrical MPGD CMOS MAPS	
MDC • $\sigma_{xy} < 130 \ \mu m$ • $\sigma_p/p \sim 0.5\%$ @ 1 GeV • $dE/dx \sim 6\%$	Cylindrical Drift chamber	
PID • π/K (and K/p) 3-4σ separation up to 2GeV/c	RICH with MPGD DIRC-like TOF	
EMCEnergy range: $0.025-3.5$ GeV σ_E (%) @ 1 GeVBarrel:2.5Endcap:4Pos. Res. :5 mm	pCsl + APD	
MUD • 0.4 - 2 GeV • π suppression >30	RPC + scintillator	

