

Neutrino Program at Fermilab - Enhancing proton beam power and accelerator infrastructure

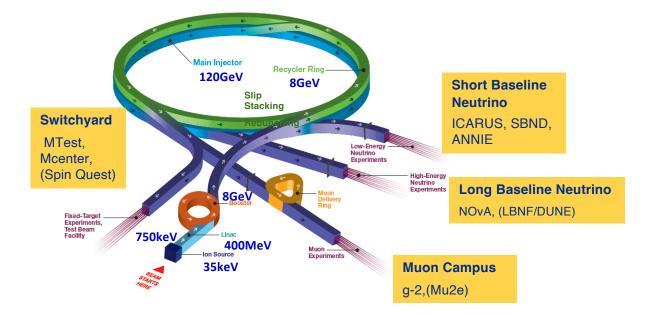
Sudeshna Ganguly FPCP 2024 28 May 2024

Fermilab Neutrino Program

Megawatt upgrade

LBNF/DUNE

Accelerator Capabilities Enhancement (ACE) overview and opportunities


Main Injector Ramp & Targetry (MIRT)

Neutrino Beam challenges

Beam Instrumentation

Current Accelerator Complex at Fermilab

- Fermilab operates largest particle accelerator complex in USA, 6,800 acres of federal land
 - ~1,900 staff with a yearly budget of ~ \$600M
 - Hosts facilities utilized by over 4,000 scientists from 50+ countries
- $\circ~$ Continues its mission to unravel mysteries of matter, energy, space, and time for global benefit

NuMI Beamline

- Intense beam of muon-neutrinos aimed towards Minnesota
- Main Injector provides 50–70 trillion 120GeV protons every 1.2 seconds
 - Originally designed for 400 kW
- Each pulse generates ~ $2 \times 10^{14} v_{\mu}$

~20 million pulses annually

• Commissioned in 2005, run until ~2027

NuMI Megawatt Upgrade

	NuMI Design	NOvA	1 MW upgrade
Proton beam energy	120 GeV		
Beam power (kW)	400	700	1 MW
Energy Spectrum	Low Energy Medium Energy		
Cycle time (s)	1.87	1.33	1.2
Protons per spill	4.0 x 10 ¹³	4.9 x 10 ¹³	6.5 x 10 ¹³
Spot Size (mm)	1.0	1.3	1.5
Beam pulse width	10 microsec		

R. Zwaska I Next-Gen Accelerators at Fermilab I NAPAC 2022

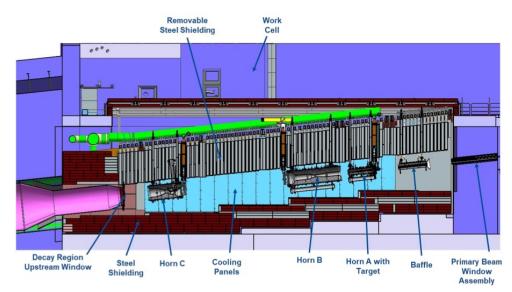
- Enhanced Beam Power:
 - Upgraded from 400 kW to 700 kW with NOvA /Accelerator & NuMI Upgrades (ANU)
 - NuMI Megawatt Accelerator Improvement Project (AIP): 2018-2021
 - Extended Capacity: Modified to accept up to 1 MW beam power
 - Upgrade of target, horns, and supporting systems to be capable of accepting 1 MW beam power through 2025
- Completion in 2021: Finished upgrades after three annual shutdowns for component replacement
 - Various upgrade done, beam σ on target = 1 1.5 mm
- Power Milestone:
 - Set a record of nearly 959 kW in May 2023
 - Demonstrated capability with 1.133s MI cycle run

LBNF/DUNE

LBNF/DUNE-US Project provides

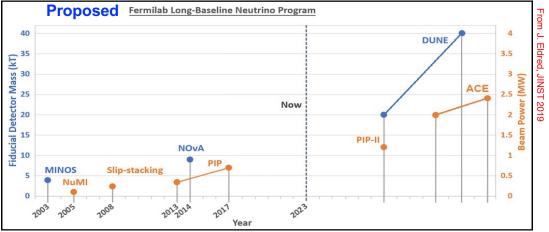
- Up to 2.4 MW proton beamline
- 1.2 MW target systems
- Up to 2.4 MW of shielding and absorber


	LBNF/DUNE-US Project + DUNE Int'l Project	
Capability Description	Phase I	Phase II
Beamline		
1.2MW (includes 2.4MW infrastructure)	х	
2.4MW		X ¹
Far Detectors		
FD1 – 17 kton	Х	
FD2 – 17 kton	х	
FD3		Х
FD4		х
Near Detectors ²		
ND Lar	х	
TMS	Х	
SAND	х	
MCND (ND GAr)		Х


Note 1: requires upgrades to LBNF neutrino target and upgrades to Fermilab accelerator complex. The LBNF facility is built to support 2.4MW in Phase I. Note 2: Near Detector Subproject threshold scope provides "day 1" requirements to start the

DUNE experiment

R. Zwaska I Next-Gen Accelerators at Fermilab I NAPAC 2022


DUNE: World's most powerful neutrino experiment, powered by PIP-II & LBNF

Accelerator Capabilities Enhancement (ACE) overview and opportunities

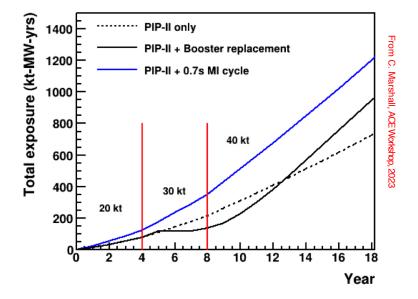
- ACE upgrade: accelerate beam delivery to LBNF/DUNE via MI cycle time reduction – faster way to 2+ MW
- ACE-MIRT upgrade: Main Injector Ramp & Targetry: MI cycle time (~0.7 s) + improvements of Target Systems capabilities

PIP-II upgrades will provide proton power of 1.2 MW (at max 1.35 MW)

Set maximum energy (E) to 120 GeV; one option is to boost beam pulse intensity (N), requiring additional 8 GeV upgrades to beam intensity

Other option is to decrease MI ramp time

$$P = \frac{eNE}{T}$$



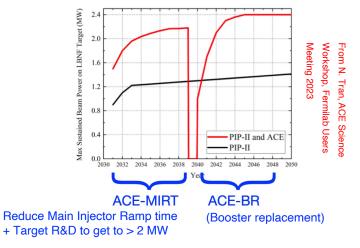
Accelerator Capabilities Enhancement (ACE) overview and opportunities

•DUNE sensitivities depend on exposure (kt*MW*yrs)

•Oscillation sensitivities depend on total Far Detector exposure

•ACE upgrade to 2+ MW optimizes 40 kT DUNE detector

Assume an initial capacity of 20 kt (Phase I; 2 FD modules), with an additional 10 kt module added in year 4 and another 10 kt module in year 8


Accelerator Capabilities Enhancement (ACE) overview and opportunities

ACE-MIRT proposed to reduce Main Injector cycler to ~0.65s to increase beam power

In ACE-MIRT period:

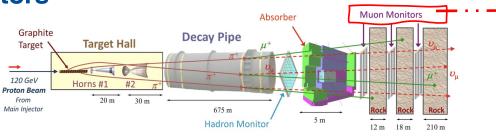
Significant beams at 0.8 GeV

• Less at 8 GeV (because of MI cycle time, absolute minimum slip stacking time is 0.65s)

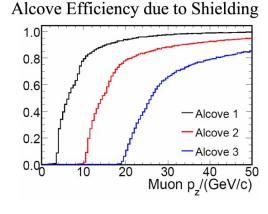
		PIP-II Booster			
Operation scenario	Nominal	PIP-II	A	В	units
MI 120 GeV ramp rate	1.333	1.2	0.9	0.7	s
Booster intensity	4.5			6.5	10 ¹² p
Booster ramp rate	15			20	Hz
Number of batches	12		12		
MI power	0.75	1.2	1.7	2.14	MW
cycles for 8 GeV	6	12	6	2	
Available 8 GeV power	29	83	56	24	kW

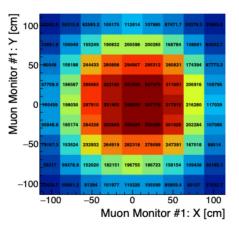
Neutrino Beam Challenges

Beam Instrumentation

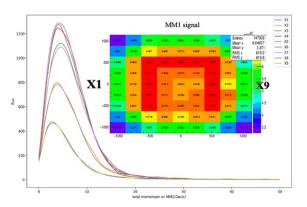

- Essential for smooth operation of accelerator complexes
- Impacted by immediate/cumulative radiation exposure, ambient temperature, humidity etc.
 e.g. NuMI Muon monitor1 damaged by radiation
- Affects range of operational beam parameters, e.g. highest possible beam power
- Essential for reliable and efficient operations at higher beam power for future multi-MW facilities
- Fermilab, KEK/J-PARC collaborating on a global R&D efforts to enhance beam instrumentation

			beam instrumentations
Facility	Beam Energy	Beam Power	Instruments
LBNF	60 - 120 GeV	1.2 MW - 2.4 MW (50-70e12 protons per spill, 0.6-1.2 sec repetition time)	 Target Health Monitor. (non-contact sensor More radiation hardened Beam Loss Monitors (BLMs). More radiation hardened Hadron Monitor. Pico-second muon monitor. Primary Proton Beam monitor.
Mu2e	8 GeV	8 kW (slow extraction beam, 1e9 protons per spill)	 Target health monitor. (non-contact sensor 2. Use same radiation hardened hadron monitor technology as production target monitor. Primary Proton Beam Monitor.
Mu2e-II	0.8 GeV	100 kW	 Target health monitor. Primary Proton Beam Monitor.

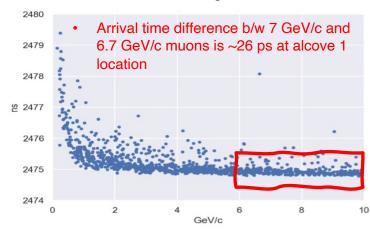

Ideas for radiation hardened


Muon Monitors

Three monitor receive different energy muons


Muon Monitor 1 signal

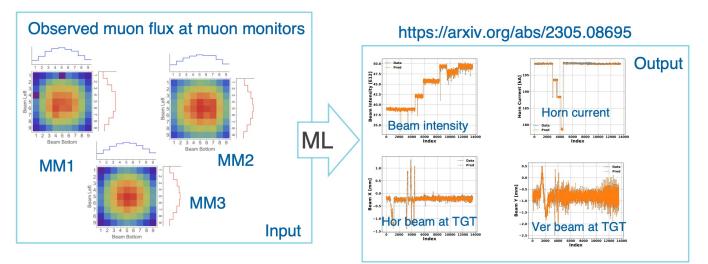
https://arxiv.org/pdf/2309.08029.pdf


New Instrumentation Ideas

- Large Area Picosecond Photodetector (LAPPD)
 - Use LAPPD as muon monitors, provides muon TOF measurement in alcoves across transverse plane
 - Allows application of precision timing in neutrino experiments
- LAPPDs already offer a space resolution of 1x1 mm and a time resolution of ~55 ps or better

Simulated momentum spectra on central row of MM1

- Individual pixel sees different muon spectrum
- X1 & X9, X2 & X8, X3 & X7, X4 & X6 shows similar shape


 Observed time distribution will be different at different pixel position
 Fermilab

Simulated time-of-flight vs muon

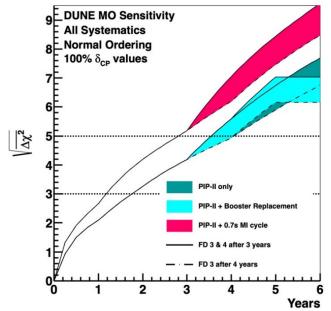
New Instrumentation Ideas

Machine Learning for Beam Quality Assessment in NuMI:

- •NuMI horn's linear beam optics implies linear response to beam changes.
- •ML algorithm with ANN predicts target beam positions.
- •Based on 241 observed values, accuracy: ±0.018 mm horizontally, ±0.013 mm vertically observed
- •ML matches traditional instrumentation accuracy

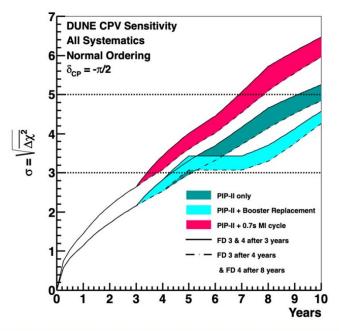
> 1,000 flux images are required for training ML

Summary


- ACE-MIRT plans to upgrade Main Injector to reduce ramp time and deliver more beam power to DUNE (max ~ 2.1 MW) as soon as possible
- Requires target R&D to ensure that DUNE can handle up to 2.4 MW of beam power
- Need significant R&D efforts focused on radiation-hard beam instrumentation
- Fermilab and KEK/J-PARC accelerator and beamline groups have joined forces plan to expand

Backup

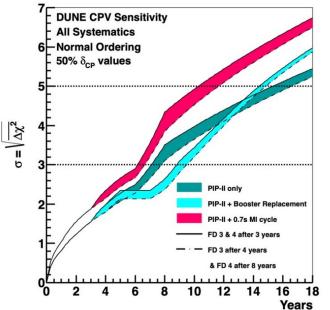
Mass ordering sensitivity with updated beamline scenarios


- Band corresponds to different FD staging scenarios
- This is shown for the worst case scenario in other oscillation parameters
- DUNE determines the mass ordering at >5σ in Phase I no matter what
- Option 0 pushes milestones earlier by ~1 year

ROCHESTER DUNE

ACE - DUNE Physics

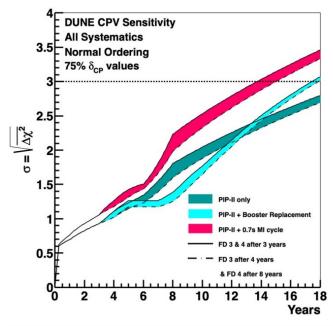
CP violation sensitivity for maximal CPV (easiest case)


ACE - DUNE Physics

- Scenario where $\delta_{CP} = -\pi/2$, the easiest possible scenario for establishing CPV
- 3σ milestone is achieved DUNE Phase I
- Option 0 pushes milestone forward by ~1 year

ROCHESTER DUNE

CP violation sensitivity in more challenging case: 50% δ values


- CP violation significance over 50% of possible δ_{CP} values, essentially the median significance if you have a flat prior on true δ_{CP}
- DUNE could be competitive with Hyper-K if 5σ can be achieved in 10 years
- Kinks at 6-8 years are due to incorporation of constraint from upgraded Near Detector installed by year 6
- Option 0 significantly increases DUNE's competitiveness

ACE - DUNE Physics

Even more challenging scenario: 75% δ values

- CP violation significance over 75% of possible δ_{CP} values
- This is the primary physics goal established in the 2014 P5 recommendations
- It is extremely challenging to establish CPV at 3σ in this scenario
- DUNE and Hyper-K are competitive in this scenario, and Option 0 significantly increases DUNE's competitiveness

ACE - DUNE Physics

