22nd Conference on Flavor Physics and CP Violation, May 27th, 2024

SEARCHES FOR RARE DECAYS

Kai-Feng Chen (NTU) On Behalf of the CMS Collaboration

PROBE FOR NEW PHYSICS?

Through direct searches:

 Produce "real" new particles at high energy and discovery via their decays or interactions with the detectors.

Through indirect searches:

 "Virtual" new particles participating in the RARE PROCESSES and detecting any deviations from the SM predictions.

If new particles H^+ cannot be observed in the direct searches, here is the place we shall dig in! \boldsymbol{Q} $\widetilde{\chi}^{-}$ Direct and indirect searches are both necessary and complement each other! Search for the LFV **Observation of Observation of the** rare $J/\psi \rightarrow 4\mu$ decay $\tau \rightarrow 3\mu$ decay rare $\eta \rightarrow 4\mu$ decay PLB 853 (2024) 138633 PRL 131 (2023) 091903 **CMS BPH-22-006**

Accepted by PRD

CMS MUON RECONSTRUCTION

CMS muon system:

- $\circ~$ 3 different devices, with a large coverage up to $|\eta|<$ 2.4.
- Good dimuon mass resolution:
 ~0.6-1.5% (depending on |y|).
- Reconstruction algorithms:
 - Standalone muon:

reconstructed in muon system only

- Global muon: standalone muon \Rightarrow inner track
- Tracker muon:
 inner track ⇒ muon system

CMS HEAVY FLAVOR TRIGGERS

> CMS trigger system:

- Fast hardware trigger (L1) @ 100 kHz
- Software trigger with full tracking & vertex reconstruction (HLT) @ 1.5 kHz.
- Specific triggers were developed for various analyses.
- Trigger requirements tightened with increased luminosity.
- ~15% of bandwidth is given to flavor physics; "scouting" & "parking" streams for extended capabilities.

PHYSICS MOTIVATION: $B \rightarrow \mu^+\mu^-$

- > $B \rightarrow \mu^+\mu^-$ decays only proceed through FCNC suppressed in SM.
- Loop diagram + Suppressed SM + Theoretic an excellent place to look for NP.
- ► What to measure:
 - **Branching fractions**: $B_s \rightarrow \mu \mu$ may start 1 \bigcirc while first evidence of $B^0 \rightarrow \mu \mu$ might emer
 - **Effective lifetime**: only the heavy B_s sta \bigcirc the SM; different composition of states m

$$\tau_{\mu^{+}\mu^{-}} \equiv \frac{\int_{0}^{\infty} t \,\Gamma(B_{s}(t) \to \mu^{+}\mu^{-}) \,dt}{\int_{0}^{\infty} \Gamma(B_{s}(t) \to \mu^{+}\mu^{-}) \,dt} = \frac{\tau_{B_{s}^{0}}}{1 - y_{s}^{2}} \begin{pmatrix} \frac{1 + 2\mathcal{A}_{\Delta\Gamma}^{\mu^{+}\mu^{-}} y_{s} + y_{s}^{2}}{1 + \mathcal{A}_{\Delta\Gamma}^{\mu^{+}\mu^{-}} y_{s}} \end{pmatrix} \qquad \qquad \mathcal{A}_{\Delta\Gamma}^{\mu^{+}\mu^{-}} \equiv -\mathcal{R}(\lambda)/(1 + |\lambda|^{2}) \\ y_{s} \equiv \tau_{\mathrm{B}_{s}^{0}} \Delta\Gamma_{s}/2 \end{pmatrix}$$

> SM predictions:

 $B(B_{s} \rightarrow \mu^{+}\mu^{-}) = (3.66 \pm 0.14) \times 10^{-9}$ $B(B^{0} \rightarrow \mu^{+}\mu^{-}) = (1.03 \pm 0.05) \times 10^{-10}$ $\tau(B_s \rightarrow \mu^+ \mu^-) = 1.624 \pm 0.009 \text{ ps}$

$$b \longrightarrow \overline{t} \quad 0 \quad u^{+}$$

$$\overline{b} \quad \overline{b} \quad \overline{c} \quad \overline{c} \quad \overline{u} \quad \overline{u}^{+} \quad \overline{u}^{+}$$

$$B_{(s)}^{0} \quad \overline{t}, \overline{c}, \overline{u} \quad \overline{u}^{+} \quad \overline{u}^{+} \quad \overline{u}^{+}$$

$$d(s) \quad \overline{u} \quad \overline{u}^{+} \quad \overline{u}^{+} \quad \overline{u}^{+}$$

Ref: Beneke et al, JHEP 10 (2019) 232 Beneke et al, PRL 120, 011801 (2018) **Bobeth et al, PRL 112, 101801 (2014)**

ANALYSIS ASPECTS

► $B_{s,d} \rightarrow \mu^+ \mu^-$ signal signature:

- two muons from one displaced vertex; isolated from other activities; momentum aligned with its flight direction; invariant mass peaking at $M(B_{s,d}).$
- Background sources:
 - **Combinatorial background consists of** \bigcirc
 - two semileptonic B decays
 - one semileptonic B + a misidentified hadron
 - **Rare background** from single B meson decays: \bigcirc
 - B→Kπ/KK/ππ (peaking), e.g.

 $B \rightarrow h^{-}\mu^{+}\nu, B \rightarrow h\mu^{+}\mu^{-}$ (not peaking)

Powerful background suppression reached by muon quality, wellreconstructed secondary vertex, isolation, pointing angle, and $M(\mu\mu)$ resolution.

ANALYSIS ASPECTS (CONT.)

Background suppression achieved by

- Strict BDT muon identification requirement, including tracking and muon related detector information, fake rates ≤0.1%.
- An improved event classification BDT, which includes topological and kinematical variables.
- Branching fractions are normalized wit

Allow first order cancellation of systematics; rare backgrounds normalized in a similar manner. $\mathcal{B}(B_s^0 \to \mu^+ \mu^-) = \mathcal{B}(B^+$ $or \left\{ = \mathcal{B}(B_s^0 \to \mu^+ \mu^-) = \mathcal{B}(B^+) \right\}$

th
$$B^+ \rightarrow J/\psi K^+$$
 or $B_s \rightarrow J/\psi \phi$:

$$\begin{array}{l} \rightarrow J/\psi K^{+}) \times \frac{N_{B_{s}^{0} \rightarrow \mu^{+} \mu^{-}}}{N_{B^{+} \rightarrow J/\psi K^{+}}} \times \frac{\epsilon_{B^{+} \rightarrow J/\psi K^{+}}}{\epsilon_{B_{s}^{0} \rightarrow \mu^{+} \mu^{-}}} \times \frac{f_{u}}{f_{s}} \\ \rightarrow J/\psi \phi) \times \frac{N_{B_{s}^{0} \rightarrow \mu^{+} \mu^{-}}}{N_{B_{s}^{0} \rightarrow J/\psi \phi}} \times \frac{\epsilon_{B_{s}^{0} \rightarrow J/\psi \phi}}{\epsilon_{B_{s}^{0} \rightarrow \mu^{+} \mu^{-}}} \\ \rightarrow J/\psi K^{+}) \times \frac{N_{B^{0} \rightarrow \mu^{+} \mu^{-}}}{N_{B^{+} \rightarrow J/\psi K^{+}}} \times \frac{\epsilon_{B^{+} \rightarrow J/\psi K^{+}}}{\epsilon_{B^{0} \rightarrow \mu^{+} \mu^{-}}} \times \frac{f_{u}}{f_{d}} \end{array}$$

b hadronization fraction ratio

=1

EVENT CLASSIFICATION MVA

- \blacktriangleright New event classification MVA (denoted as d_{MVA}) to suppress the combinatorial backgrounds.
- ► Training with signal MC and mass sideband data with the XGBoost package (advanced gradient boosting algorithm).
- ► Use $B^+ \rightarrow J/\psi K^+$ to calibrate MVA performance; to make the d_{MVA} closer to signal $B \rightarrow \mu\mu$:
 - Require soft kaon $p_T < 1.5$ GeV;
 - Scale flight-length significance by 1.6; \bigcirc
 - Train a XGBoost classifier to reweight MC to match to the data.

~2 times higher signal efficiency for the same background level w.r.t. previous analysis

only introduced here, not for the normalization!

FRAGMENTATION RATIO: f_s/f_u

> The ratio of fragmentation fraction f_s/f_u is a key external input to this measurement:

 $\mathcal{B}(B_s^0 \to \mu^+ \mu^-) = \mathcal{B}(B^+ \to J/\psi K^+) \times \frac{N_{B_s^0 \to \mu^+ \mu^-}}{N_{B^+ \to J/\psi K^+}} \times \frac{\epsilon_{B^+ \to J/\psi K^+}}{\epsilon_{B_s^0 \to \mu^+ \mu^-}} \times \frac{f_u}{f_s}$

- ► This value is derived from the p_T-dependent results from LHCb PRD 104 (2021) 032005:
 - Integrate with the effective p_T distribution from the CMS analysis. ·····
 - Verified with $J/\psi K^+$ and $J/\psi \phi$ data.
- Resulting BF can be rescaled:
 - Can plug in a different value afterwards!
 - Treated as an **external uncertainty** (not as a constrained nuisance parameter).

SYSTEMATIC UNCERTAINTIES BREAKDOWN

	Effect	BF(B _s -	→µ+µ-)	$BF(B^0-$	→µ+µ-)	
	Trigger efficiency	2–4%				
Branchi fraction	Pileup	1%				
	ng Vertex quality	1%				
	d _{MVA} correction	2–3%				
	Tracking efficiency	2.3%				
	$J/\psi K^+$ shape	1%				
	$J/\psi K^+$ branching fraction	1%				
	Fit bias	2.2% 3.5%		4.5%		
	f_s/f_u ratio			_		
	Effect	2016-A	2016-B	2017	2018	
	Efficiency modeling		0.01 ps			
	Scanning over different gen lifetime sample	0.01 ps				
Effectiv Lifetim	veDecay time distributionnemis-modeling	0.10 ps	0.06 ps	0.02 ps	0.02 ps	
1	Lifetime bias	0.04 ps	0.04 ps	0.05 ps	0.04 ps	
	Total	0.11 ps	0.07 ps	0.05 ps	0.04 ps	

Still dominated by statistical uncertainty!

► BF dependency on lifetime assumption: scale factors on branching fraction for alternative lifetime hypothesis (τ in ps): $\alpha_{BF} = 1.577 - 0.358\tau$

 Lifetime bias is caused by the correlation between decay time and d_{MVA}.

Channel	Branching fraction
$B_s \rightarrow \mu^+ \mu^-$	$[3.83^{+0.38}_{-0.36} (\text{stat})^{+0.19}_{-0.16} (\text{syst}) \pm 0.13 (f_s/f_u)] \times$
$B^0 \rightarrow \mu^+ \mu^-$	$[0.37^{+0.75}_{-0.67} (\text{stat})^{+0.08}_{-0.09} (\text{syst})] \times 10^{-10}$

11

Remark: $BF(B_s \rightarrow J/\psi\phi)$ itself still depends on $f_s/f_{\mu}!$

RESULTS: LIMITS & EFFECTIVE LIFETIME

- ► Upper limit with full CLs prescription, using LHC-style profile likelihood as the test statistic.
- ► Effective lifetime extract with 3D ML fit to mass, decay time, and decay time uncertainty.

Result is consistent with SM and previous/other studies

$B_s \rightarrow \mu^+ \mu^-$ Effective Lifetime

 $\tau = 1.83^{+0.23}_{-0.20}$ (stat) ± 0.03 (syst) [ps]

CMS Experiment at LHC, CERN Data recorded: Wed Aug 1 14:03:34 2018 CEST Run/Event: 320674 / 324515403 Lumi section: 597

$AB_s \rightarrow \mu^+\mu^-$ Candidate From 2018 Data

SEARCH FOR $\tau \rightarrow 3\mu$: INTRODUCTION

- \blacktriangleright A charged lepton flavor violating (CLFV) decay of τ to 3 muons, no missing neutrinos.
- Allowed by neutrino oscillations in SM, but with extraordinarily small branching fractions beyond experimental accessibility!
- The rate can be strongly enhanced with New Physics scenarios; experimentally the three-muon final state is accessible and clean.

 $B(\tau \rightarrow 3\mu)$ **10**⁻⁵² **10**⁻⁵⁷ 10^{-47} 10^{-42} 10^{-37} SM prediction: 10⁻⁵³~10⁻⁵⁶

SOURCES OF T LEPTONS IN PROTON COLLISIONS

- \blacktriangleright Two major sources of τ leptons are considered: **heavy flavor** and **W-boson**:
- Decaying of heavy flavor mesons is the dominant source of τ leptons (~10¹¹ τ 's per fb⁻¹):
 - Lower p_T , more forward (larger $|\eta|$) \Rightarrow lower trigger efficiency.
 - \circ Easier to pick up fake μ from hadrons.
- \blacktriangleright Rate for τ leptons from W-boson decay is much smaller (~10⁷ τ 's per fb⁻¹), but:
 - Higher p_T and central in barrel \Rightarrow easier triggering!
 - Kinematic information of W provides additional handles for background suppression: large missing E_T, lower hadronic activities, etc.

ANALYSIS OVERVIEW

- ► The analysis incorporate 131 fb⁻¹ pp collision data @ 13 TeV:
 - 2016 data result is already published: Ref. <u>CMS JHEP 01 (2021) 163</u>.
 - Extended to full Run-2 data, investigating both the heavy flavor and W production channels.

Dedicated HLT triggers are designed:

- **W-boson**: select three isolated muons;
- **Heavy flavor**: 2 muons + 1 track (2017) or three muons (2018); \bigcirc
- Signal candidate is reconstructed with 3 muons, with sum of the charge $= \pm 1$:
 - Signal extraction with simultaneous UML fit to 3μ invariant masses;
 - production channel.

BACKGROUND SOURCES

- Dominant background is combinatorial, with two real muons plus one fake μ from hadrons (typically decay-in-flight):
 - A typical case is B→D cascade decays, e.g. B→D+ μ +X, D→ μ +v+K, K→ μ
 - A dedicated BDT used as low-p_T muon ID, trained on signal vs. fake muons from hadrons.
- ► Backgrounds with 3 genuine muons, with two of them coming from resonances: $\varphi(1020) \rightarrow \mu\mu$ and $\omega(783) \rightarrow \mu\mu$
 - Apply veto to those resonances
- Further background suppression by event MVA discriminator.
- ➤ Electroweak W→µv+FSR: produce 3µ+large missing E_T signature, removing by requiring on the displacement from the interaction point.

MULTIVARIATE ANALYSIS

- Boosted Decision Tree discriminators are trained to suppress background:
 - \circ τ→3µ MC as signal;
 - Data sideband events are used as proxies of background
 - Separated MVA for different channels.
- Scale factors applied to MC to match the data efficiencies and distributions.
- Key input features include: kinematical information (momentum, missing energy) and topological (vertex finding, pointing angle, isolation variables), others (muon ID BDT).

RESULTING UPPER LIMIT

► No hint of signal found, upper limit set on the $\tau \rightarrow 3\mu$ branching fraction:

95%

90%

 $<3.6 \times 10^{-8}$

 $<2.9 \times 10^{-8}$

New analysis of 2017+2018 C.L. UL on $B(\tau \rightarrow 3\mu)$ data combined with 2016 for the full Run-2 result:

Analyses utilizing CMS extended trigger capabilities: "scouting" & "parking" steams More information in CMS arXiv:2403.16134, submitted to Physics Reports

VERY RARE $\eta \rightarrow 4\mu$ DECAYS

- ► In SM $\eta \rightarrow 4\mu$ decay predicted with a very low branching fraction of $O(10^{-9})$:
 - Sensitive to new physics scenarios + precision test of the SM.
- > This analysis is only feasible with **"data scouting"** scenario:
 - Regular trigger thresholds are limited by the computing power and bandwidth.
 - Reduce event size to speed up data acquisition!
 - Limit the amount of information to muon tracks \bigcirc
 - Save high-level trigger reconstruction and skip the 0 standard prompt event processing
 - Reduced the typical event size from MB to few kB.
- With relaxed thresholds, it is possible to explore rare decays in very low p_T regions!

4.5 M of $\eta \rightarrow 2\mu$ events recorded \rightarrow billions of η mesons produced in the CMS acceptance!

VERY RARE $\eta \rightarrow 4\mu$ DECAYS: RESULT

Resulting branching fraction B($\eta \rightarrow \mu^+\mu^-\mu^+\mu^-$) = 5.0 ± 0.8 (stat) ± 0.7 (syst) ± 0.7 (B_{$\eta \rightarrow \mu\mu$}) × 10⁻⁹

in agreement with SM prediction: $3.98 \pm 0.15 \times 10^{-9}$

~50 signal events observed from 101 fb⁻¹ data, clearly a discovery of >5σ significance!

- ► Normalized to the $\eta \rightarrow 2\mu$ yield as a relatively precise normalization strategy;
- Efficiency and acceptance corrections from MC for $2\mu 4\mu$ differences.

Good description of fourmuon p_T spectrum for the events near signal peak.

OBSERVATION OF RARE J/\psi \rightarrow 4\mu DECAYS

- ➤ Thanks to the large production rate, an excellent opportunity to explore very rare decays to multiple muons.
- ► J/ ψ →4e and 2e2 μ have been found by BES III.
- A novel testing ground for quantum electrodynamics predictions.
- > Exploits the **"B Parking"** scenario: a **specialized trigger** (*w/just one muon!*) and data storage strategy (no prompt reconstruction, only "park" the data for further analysis) was implemented to assemble a b-hadron enriched data set in 2018.

► LHCb see this too: LHCb-CONF-2024-001.

CMS Experiment at the LHC, CERN Data recorded: 2018-Aug-09 21:56:30.285184 GMT Run / Event / LS: 321067 / 853682455 / 591

> A $J/\psi \rightarrow 4\mu$ candidate event reassemble the CMS logo!

SUMMARY

- > The studies of $B_{(s,d)} \rightarrow \mu \mu$ are presented. Results are consistent with the SM, will pull BF($B_s \rightarrow \mu \mu$) average to be higher / closer to SM value.
- ► By exploring both heavy flavor and W channels with full Run-2 samples, the upper limit on $\tau \rightarrow 3\mu$ is getting closer the best result from the B-factory.
- ► The extended trigger capabilities even allow the **observation of very rare** $\eta \rightarrow 4\mu$ and $J/\psi \rightarrow 4\mu$ decays!

Thanks to the great muon performance and dynamic trigger configurations, CMS can play a key role in rare decay searches!

