Precision measurements of τ lepton decays at Belle II

Marcela Garcia Hernandez (IPNS, KEK) on behalf of the Belle II collaboration.

22nd Conference on Flavor Physics and CP Violation (FPCP 2024)

📧 mgarciah@post.kek.jp

Belle II at **SuperKEKB** electron-positron asymmetric beams collider. Center-of-mass energy of $\sqrt{s} \approx m_{\Upsilon(45)} \approx 10.58$ GeV. Luminosity **world record**: 4.7 x 10³⁴ cm⁻² s⁻¹. **B**-factories are also τ -factories:

- $\sigma(e^+e^- \rightarrow \Upsilon(4s) \rightarrow BB) = 1.05 \text{ nb}$
- $\sigma (e^+e^- \rightarrow \tau^+\tau^-) = 0.919 \text{ nb}$

Belle II has recorded > 470 fb⁻¹ \approx 432 million τ pairs. The goal is to reach 50 ab⁻¹ \approx 46 billion τ pairs.

Run 1 (2019-2022): 424 fb⁻¹.

on-resonance (10.58 GeV) and off-resonance.

Run 2 (February 2024-): Currently taking data.

Features:

- Clean environment
- Well defined initial state energy \rightarrow Well known E_{missing}.
- Efficient neutrals reconstruction
- Low multiplicity trigger menus
- Particle Identification system.
- High tracking resolution.

τ Lepton

 τ decay into hadrons (> 200 channels) and leptons.

 τ Lepton allows us to perform Standard Model (SM) precision measurements and search for new physics.

• τ events are produced back-to-back in CM frame.

$$E_{\tau}^{CMS} \sim \frac{\sqrt{(s)}}{2}$$

*In absence of ISR.

 Events can be classified in two hemispheres (sig, tag) using the thrust axis.

$$V_{thrust} = \frac{\sum_{i} \vec{p}_{i}^{CMS} \cdot \hat{n}_{thrust}}{\sum_{i} |\vec{p}_{i}^{CMS}|}$$

In this talk:

- Measurement of the τ -lepton mass.
- Test of Lepton Flavor Universality.

Measurement of the τ -lepton mass

- One of the fundamental parameter of the Standard Model.
 - Precision is important for predictions of τ branching fractions. Ο
- Involved in the Test of Lepton flavor universality.
- Previous results dominated by systematic uncertainties.
- Deviation from SM prediction \rightarrow evidence of New Physics.

 B^{SM}

1.777 GeV

tau

Precision measurements of r lepton decays at Belle II | Marcela García | FPCP 2024

Measurement of the τ -lepton mass

Belle II dataset of 190 fb⁻¹ at $\sqrt{s} \approx 10.58$ GeV.

Event Selection

- Main backgrounds $e^+e^- \rightarrow q\overline{q} \& e^+e^- \rightarrow \tau^+\tau^-$, with \bullet other tau decays than $\tau^{\mp} \rightarrow \pi^{\mp} \pi^{+} \pi^{-} v$.
- Background suppression via FOM maximization. Purity = 90%. \bullet Method

Then , the au mass, assuming zero mass of the neutrino, is given by

 3π

1

$$m_{\tau} = \sqrt{M_{3\pi}^2 + 2(E_{\tau}^* - E_{3\pi}^*)(E_{3\pi}^* - p_{3\pi}^* \cos \alpha^*)} \qquad * = \text{CMS}$$

The energy of the τ is half of the collision energy, and assuming α zero, we defined the pseudomass. $M_{min} = \sqrt{M_{3\pi}^2 + 2(\sqrt{s}/2 - E_{3\pi}^*)(E_{3\pi}^* - p_{3\pi}^*)} \le m_{\tau}$

5

Ī

+ $\pi\pi^0$

Measurement of the τ**-lepton** mass

The distribution of the pseudomass is fitted to a empirical edge function to estimate τ lepton mass. $F(M, \vec{P}) = -P_3 \cdot \tan^{-1}[(M - P_1)/P_2] + P_4(M - P_1) + P_5(M - P_1)^2 + 1$

P₁ is the estimator of the mass. An unbinned maximum-likelihood fit is performed.

Precision measurements of r lepton decays at Belle II | Marcela García | FPCP 2024

Measurement of the τ -lepton mass

Systematic Uncertainties

Calibrated from fully reconstructed B-mesons.

$$M_{min} = \sqrt{M_{3\pi}^2 + 2(\sqrt{s/2} - E_{3\pi}^*)(E_{3\pi}^* - p_{3\pi}^*)} \le m_{\tau}$$

Calibrated from $D^{\circ} \rightarrow K^{-} \pi^{+}$.

~ 0.06MeV/c² ~ 60 KeV/c²

Measurement of the τ**-lepton** mass

Systematic Uncertainties

Source	$\frac{\text{Uncertainty}}{[\text{MeV}/c^2]}$
Knowledge of the colliding beams:	
Beam-energy correction	0.07
Boost vector	< 0.01
Reconstruction of charged particles:	
Charged-particle momentum correction	0.06
Detector misalignment	0.03
Fit model:	
Estimator bias	0.03
Choice of the fit function	0.02
Mass dependence of the bias	< 0.01
Imperfections of the simulation:	
Detector material density	0.03
Modeling of ISR, FSR and τ decay	0.02
Neutral particle reconstruction efficiency	< 0.01
Momentum resolution	< 0.01
Tracking efficiency correction	< 0.01
Trigger efficiency	< 0.01
Background processes	< 0.01
Total	0.11

$$M_{min} = \sqrt{M_{3\pi}^2 + 2(\sqrt{s/2} - E_{3\pi}^*)(E_{3\pi}^* - p_{3\pi}^*)} \le m_{\tau}$$

Calibrated from fully reconstructed B-mesons.

Calibrated from $D^{\circ} \rightarrow K^{-} \pi^{+}$.

Belle II $\int L dt = 190 \text{ fb}^{-1}$

Before momentum correction

After momentum correction

~ 0.07MeV/c² ~ 70 KeV/c²

- Additional consistency test were carried out, time and kinematic region dependence, simulation modeling.
 Everything was found consistent
 - \rightarrow Everything was found consistent.

Phys. Rev. D 108, 032006

Measurement of the τ -lepton mass

Test of Lepton Flavor Universality

with f (x) = $1 - 8x + 8x^3 - x^4 - 12x^2 \ln x$

- Test for μ -e universality: $R_{\mu} = \frac{\mathcal{B}(\tau^- \to \mu^- \bar{\nu}_{\mu} \nu_{\tau})}{\mathcal{B}(\tau^- \to e^- \bar{\nu}_e \nu_{\tau})} \implies \left(\frac{g_{\mu}}{g_e}\right)_{\tau} = \sqrt{R_{\mu}} \frac{f(m_e^2/m_{\tau}^2)}{f(m_{\mu}^2/m_{\tau}^2)}$
- τ decays are sensitive to charged and non-SM neutral currents.
- LFU violation. \rightarrow evidence for New Physics.
 - → Belle II dataset of 362 fb⁻¹ at $\sqrt{s} \approx 10.58$ GeV.

Event Selection

- $\Rightarrow \quad \mathbf{\tau}_{sig} \rightarrow \pi \mathbf{v}, \, \rho \mathbf{v} \, \mathsf{X} \; \mathbf{\tau}_{tag} \rightarrow \rho \mathbf{v} \, .$
- Main backgrounds \rightarrow Correctly reconstructed signal but wrong tag.

•
$$e^+e^- \rightarrow q\overline{q}, e^+e^-\gamma, \mu^+\mu^-\gamma.$$

Background suppression of both channels via Neural Network.
Purity 96% and 92% for electron and muon channel.

Test of Lepton Flavor Universality Method

The measurement is done in the lepton momentum P_{μ} where a binned maximum likelihood is constructed:

$$f(\vec{n}|R_{\mu},\vec{\chi}) = \prod_{b \in \text{bins}} \mathcal{P}(n_b^e|\nu_b^e(\vec{\chi})) \times \prod_{b \in \text{bins}} \mathcal{P}(n_b^{\mu}|\nu_b^{\mu}(R_{\mu},\vec{\chi})) \times \prod_{\chi \in \vec{\chi}} c_{\chi}(a_{\chi}|\chi)$$

The background templates are split by the signal-side particle type. \rightarrow true or fake lepton.

 $\nu_b^e(\vec{\chi}) = \kappa_e \times \nu_b^{e, \text{sig}} + \nu_b^{e, \text{bkg(true)}} + \nu_b^{e, \text{bkg(fake)}}$ $\nu_b^\mu(R_\mu, \vec{\chi}) = R_\mu \times \kappa_{e/\mu}^{\text{gen}} \times \kappa_e \times \nu_b^{\mu, \text{sig}} + \nu_b^{\mu, \text{bkg(true)}} + \nu_b^{\mu, \text{bkg(fake)}}$

 R_{μ} is directly extracted from the fit. The systematics are included in the likelihood as a set of nuisance parameters.

Test of Lepton Flavor Universality

Systematic uncertainties

• Main systematics come from lepton identification and triggers.

Consistency of the result

Source	Uncertainty [%]
Charged-particle identification:	0.32
Electron identification	0.22
Muon misidentification	0.19
Electron misidentification	0.12
Muon identification	0.05
Imperfections of the simulation:	0.14
Modelling of FSR	0.08
Normalisation of individual processes	0.07
Modelling of the momentum distributio	n 0.06
Tag side modelling	0.05
π^0 efficiency	0.02
Particle decay-in-flight	0.02
Tracking efficiency	0.01
Modelling of ISR	0.01
Photon efficiency	< 0.01
Photon energy	< 0.01
Detector misalignment	< 0.01
Momentum correction	< 0.01
Trigger	0.10
Size of the simulated samples	0.06
Luminosity	0.01
Total	0.37

Good agreement between results.

Belle II

13

Test of Lepton Flavor Universality

Results

Consistent with the SM at 1.4 σ .

Summary

Belle II has provided the most precise measurements in M_r and LFU (μ -e). These measurements bring us closer to the Standard Model's predictions.

Assuming independent systematics.

Coming soon:

- Measurement of Vus element. Using the $\tau \rightarrow K\nu$, $\tau \rightarrow \pi\nu$ decays.
- Update of the LFU measurement.
- τ Lifetime
- Search of CP violation in the $\tau \rightarrow K_{s}^{0} \pi v$ ($\geq 0 \pi^{0}$) decay.

BACKUP

Bean-Energy correction

Beam energy was calibrated using fully reconstructed B decays.

We exploit the fact that the collision energy is just slightly above the kinematic production threshold for BB pairs.

Uncorrected energy

$$E_B^* = \sqrt{m_B^2 + (p_B^*)^2} \approx m_B + \frac{1}{2m_B} (p_B^*)^2.$$

Relation considering event by event center of mass energy

$$E_B^* = \frac{1}{2}\sqrt{s'(1-x)}.$$

x is the energy carried by the ISR.

The collision energy is obtained from E_B^* after correcting for the effect of ISR and by accounting for the energy dependence of the ee \rightarrow BB cross section.

Charged-Particle momentum correction

The corrections for the daughter pion momenta were obtained from the $D^{o} \rightarrow K^{-} \pi^{+}$ sample with cross-checks in the

 $D^+ \rightarrow K^- \pi^+\pi^+$, $D^0 \rightarrow K^- \pi^+ \pi^- \pi^+$, and J/ $\psi \rightarrow \mu^+ \mu^-$ samples. The difference between the reconstructed and nominal masses of the D+ meson before and after corrections.

Combination LFU

Vus

$$|V_{us}| = R_{K/\pi}^{1/2} |V_{ud}| \frac{f_{\pi}}{f_K} \frac{1 - m_{\pi}^2 / m_{\tau}^2}{1 - m_K^2 / m_{\tau}^2} \left(\frac{1}{1 + \delta_{LD}}\right)^{1/2},$$
$$R_{K/\pi} = \frac{\mathcal{B}(\tau^- \to K^- \nu_{\tau})}{\mathcal{B}(\tau^- \to \pi^- \nu_{\tau})} \equiv \frac{\mathcal{B}_K}{\mathcal{B}_{\pi}},$$

SM prediction:

$$\mathcal{A}_{\tau}^{SM} = \frac{\Gamma(\tau^+ \to \pi^+ \mathcal{K}_S^0 \bar{\nu}_{\tau}) - \Gamma(\tau^- \to \pi^- \mathcal{K}_S^0 \nu_{\tau})}{\Gamma(\tau^+ \to \pi^+ \mathcal{K}_S^0 \bar{\nu}_{\tau}) + \Gamma(\tau^- \to \pi^- \mathcal{K}_S^0 \nu_{\tau})} \simeq (3.3 \pm 0.1) \times 10^{-3}$$

BaBar

СР

$$A_{\tau} = \frac{\Gamma(\tau^+ \to \pi^+ K^0_S \bar{\nu}_{\tau}) - \Gamma(\tau^- \to \pi^- K^0_S \nu_{\tau})}{\Gamma(\tau^+ \to \pi^+ K^0_S \bar{\nu}_{\tau}) + \Gamma(\tau^- \to \pi^- K^0_S \nu_{\tau})}$$

$$A_{ au}^{BaBar} = (-0.36 \pm 0.23 \pm 0.11)\%$$

Belle

$$A^{CP}(W = \sqrt{s}) = \frac{\int \cos\beta \cos\phi(\frac{d\Gamma_{\tau^{-}}}{d\omega} - \frac{d\Gamma_{\tau^{+}}}{d\omega})d\omega}{\frac{1}{2}\int(\frac{d\Gamma_{\tau^{-}}}{d\omega} + \frac{d\Gamma_{\tau^{+}}}{d\omega})d\omega}$$