Rare charm decays at LHCb

Jolanta Brodzicka [INP Krakow] on behalf of LHCb

FPCP24, Bangkok

Outline

- Rare charm decays: why important & challenging
- Why feasible at LHCb
- Hunting for rare signals: current status
- Recent results from LHCb
 - Search for $D^0 \rightarrow \mu^+ \mu^-$ [PRL131, 041804 (2023)]
 - Search for $\Lambda_{c}^{+} \rightarrow p\mu^{+}\mu^{-}$ Preliminary [LHCb-PAPER-2024-005]
 - Summary and Outlook

Rare charm decays: complementary, unique, but difficult

Complementary to strange and beauty

■ Down-type quarks in loops
⇒ different New Particles?

Unique access to up-type quarks

■ Flavour physics with top quark hopeless

Difficult

- Loops very suppressed in charm \Rightarrow rare decays suppressed in SM
- Long-distance corrections large $(\sim 1/m_c) \Rightarrow$ difficult to calculate

Studies of rare charm require

- Precise estimation of SM contributions (size of loop amplitudes)
- Large & clean data samples

JolantaBrodzicka @ FPCP24

Charm samples at LHCb

- $\sigma(pp \rightarrow c\underline{c}) \sim O(mb)$ at $\sqrt{s}=7-13$ TeV $\Rightarrow \sim 15 \times 10^{12}$ charm hadrons produced in Run-1 & Run-2
- Busy environment, nontrivial triggers (kinematic & topological cuts)
- Charm produced boosted \Rightarrow D⁰ flight distance ~10mm
- Good tracking, particle ID, vertexing, IP resolution
- Efficiency of reconstruction & selection $\leq 0(10^{-3})$
- LHCb suitable for $D^0 \rightarrow \mu^+ \mu^-$, $D^0 \rightarrow \pi^+ \pi^- \mu^+ \mu^-$, $\Lambda_{c}^+ \rightarrow p \mu^+ \mu^-$

 $\sigma(pp \rightarrow bb) \sim 0(0.1 \text{ mb})$

Decay	Note	SM	BF or best UL @95%CL	Exp.	
$D^0 \rightarrow \phi \gamma$	Radiative	~ 10-5	(2.8 ± 0.2 ± 0.1)×10 ⁻⁵	Belle	
$D^0 \rightarrow \rho \gamma$	Radiative	$\sim 10^{-6}$	(1.8 ± 0.3 ± 0.1)×10 ⁻⁵	Belle	sig
$D^0 \rightarrow \gamma \gamma$	Radiative	$\sim 10^{-8}$	< 8.5 × 10 ⁻⁷	Belle	nals
$D(s)^{+} \rightarrow \pi^{+} \mu^{+} \mu^{-}$	FCNC, $\mu^{\dagger}\mu^{-}$ non-resonant	$\sim 10^{-9}$	< 8.3 (48) × 10 ⁻⁸	LHCb	opse
$\Lambda t \to p \mu^* \mu^-$	FCNC, $\mu^{\dagger}\mu^{-}$ non-resonant	$\sim 10^{-9}$	< 8.2 × 10 ⁻⁸	LHCb	erved
$D^{*} \longrightarrow \pi^{*} e^{*} e^{-}$	FCNC, full-mass e⁺e⁻	10 ⁻⁸ -10 ⁻⁶	< 0.3 × 10 ⁻⁶	BESIII	DE
$D^{0} \rightarrow \pi^{\dagger} \pi^{-} \mu^{\dagger} \mu^{-}$	FCNC, low-mass $\mu^{\dagger}\mu^{-}$	$\sim 10^{-9}$	(7.8 ±1.9 ±0.5 ±0.8)×10 ⁻⁸	LHCb	IST ST
$D^0 \longrightarrow K^* K^- \mu^* \mu^-$	FCNC, low-mass $\mu^{\scriptscriptstyle +}\mu^{\scriptscriptstyle -}$	$\sim 10^{-9}$	(2.6 ±1.2 ±0.2 ±0.3)×10 ⁻⁸	LHCb	211014
$D^0 \rightarrow \mu^* \mu^-$	FCNC	10-13 - 10-12	< 3.5× 10 ⁻⁹	LHCb	
D ⁰ →e⁺e⁻	FCNC	10-13 -10-12	< 7.9 × 10 ⁻⁸	Belle	
$D^0 \rightarrow e^{+}\mu^{-}$	Lepton Flavour Violating	0	< 1.6 × 10 ⁻⁸	LHCb	
$D^{\dagger} \rightarrow \pi^{-} \mu^{+} \mu^{+}$	Lepton Number Violating	0	< 2.5 × 10 ⁻⁸	LHCb	

JolantaBrodzicka @ FPCP24

best sensitivity

$D^0 \rightarrow \mu^{\dagger} \mu^{-}$: introduction

- In SM, at short-distance BF(D⁰ $\rightarrow \mu^{+}\mu^{-}$) ~10⁻¹⁸
- At long distance via $D^0 \rightarrow \gamma \gamma$ channel $\Rightarrow BF(D^0 \rightarrow \mu^{\dagger} \mu^{-}) \sim 10^{-5} * BF(D^0 \rightarrow \gamma \gamma) \sim 10^{-13} - 10^{-12}$
- Most sensitive FCNC process in up-type quark sector
- UL on BF(D⁰→ $\mu^{\dagger}\mu^{-}$) \Rightarrow constraints on many NP models
- SUSY particles [with R-violation], leptoquarks contribute at tree level: BF($D^0 \rightarrow \mu^+ \mu^-$) ~10⁻⁷-10⁻⁶
- Heavy vector-like quarks: BF($D^0 \rightarrow \mu^{\dagger} \mu^{-}$) ~10⁻¹¹
- Multiple Higgs, Z' boson: BF($D^0 \rightarrow \mu^+ \mu^-$) ~10⁻¹²

PRD 66, 014009 (2002) PRD 102, 015031 (2020) PRL 116 , 141802 (2016) PRD 79, 017502 (2009) PRD 79, 114030 (2009) JHEP 10, 027 (2015) JHEP 11, 049 (2019)

$D^0 \rightarrow \mu^{\dagger} \mu^{-}$: background & calibration

- Run-1 & Run-2 data (9/fb), $D^0 \rightarrow \mu^{\dagger} \mu^{-}$ from $D^{*+} \rightarrow D^0 \pi^{\dagger}_{tag}$
- BDT to suppress combinatorial background
- $\blacksquare MisID background from D^0 \longrightarrow \pi^- \pi^+ \& D^0 \longrightarrow K^- \pi^+$
- $= \pi \rightarrow \mu \text{ misID rate with } D^0 \rightarrow \pi^- \pi^+ \text{ MC, x-checked with } D_{(s)}^+ \rightarrow \pi^- \pi^+ \pi^+ \text{ data}$
- Selection of $PID(\mu)$ optimised
- $D^0 \rightarrow K^- \pi^+ \otimes D^0 \rightarrow \pi^- \pi^+$: for calibrating MC and BDT, normalisation of BF($D^0 \rightarrow \mu^+ \mu^-$)

$D^0 \rightarrow \mu^{\dagger} \mu^{-}$: fits to m(D⁰) vs Δ m, BDT>0.66

Search for $D^0 \rightarrow \mu^{\dagger} \mu^{-}$ in three BDT regions, fitted simultaneously

PRL 131, 041804 (2023)

PRL 131, 041804 (2023)

$D^0 \rightarrow \mu^{\dagger} \mu^{-} \text{ signal } \& BF$

- Total $D^0 \rightarrow \mu^{\dagger} \mu^{-}$ yield: 79 ± 45 (stat+syst) (1.5 σ)
- Systematic uncertainties included in the fit
- Dominant syst: eff of hardware trigger & misID constraints
- UL on BF(D⁰→ $\mu^{\dagger}\mu^{-}$) with frequentist CLs method

 ${\cal B}(D^0\!\to\mu^+\mu^-)<3.1\,(3.5)\times10^{-9}$ at 90 (95)% CL

- Improvement by factor of 2 compared to the previous LHCb result
- LHCb (1/fb): BF(D⁰ $\rightarrow \mu^{+}\mu^{-}$) < 6.2×10⁻⁹ at 90% CL PLB 725, 15 (2013)
- Belle: BF(D⁰ $\rightarrow \mu^{+}\mu^{-}$) < 1.4×10⁻⁷ at 90% CL PRD 81, 091102 (2010)

$\Lambda t \rightarrow p \mu^{\dagger} \mu^{-}$: introduction

Short distance SM Long distance SM

■ In SM, at short-distance BF($\Lambda t \rightarrow p \mu^{\dagger} \mu^{-}$) ~10⁻⁸

- Long-distance contributions from V→ $\mu^{\dagger}\mu^{-}$ resonances $\stackrel{\sim}{\cong}$ \Rightarrow BF($\Lambda_{c}^{\dagger} \rightarrow p\mu^{\dagger}\mu^{-}$) ~10⁻⁶
- Resonance contributions difficult to estimate precisely (relative strong phases unknown)
- Resonance tails across full $q^2 = m^2(\mu^*\mu^-) \Rightarrow$ hard to disentangle short-distance part

$\Lambda^{t} \rightarrow p \mu^{\dagger} \mu^{-}$: background & calibration

Preliminary

- Run-2 data (5.4/fb)
- Look for $\Lambda_{\mathfrak{c}}$ signals in m($\mu^{\dagger}\mu^{\dagger}$) bins
 - For non-resonant signal: low-mass $m(\mu^{\dagger}\mu^{-})$ <508 MeV and high-mass $m(\mu^{\dagger}\mu^{-})$ >1060 MeV
- $\Lambda_{c} \rightarrow p\phi(\rightarrow \mu^{\dagger}\mu^{-})$ for MC calibration and normalisation of BF($\Lambda_{c} \rightarrow p\mu^{\dagger}\mu^{-})$
- BDT to suppress combinatorial background

 (kinematics and topology of Λ_c⁺ and daughters, track and vertex isolation)

 MisID background from Λ_c⁺→pπ⁺π⁻ (shape and π→μ misID rate from MC)
 - Optimisation for best UL in 3-dim space: BDT vs. $PID(\mu)$ vs. PID(p)

LHCB-PAPER-2024-005 $\Lambda_{c}^{\dagger} \rightarrow p \mu^{\dagger} \mu^{-}$: m($p \mu^{\dagger} \mu^{-}$) fits in resonance regions

$\Lambda_{c} \rightarrow p\mu^{\dagger}\mu^{-}: m(p\mu^{\dagger}\mu^{-})$ fits in non-res. regions

- PDFs for signal and $\Lambda_{c} \rightarrow p\pi^{\dagger}\pi^{-}$ misID fixed from MC, free exponential for combinatorial
- Total misID yield from simultaneous fit to all $m(\mu^{\dagger}\mu^{-})$ bins. Scaled in individual bins

 $\Lambda_{c} \rightarrow p\mu^{\dagger}\mu^{\dagger} \Lambda_{c} \rightarrow p\pi^{\dagger}\pi^{\dagger}$ misID

LHCB-PAPER-2024-005

$\Lambda t \rightarrow p \mu^{\dagger} \mu^{-}$: results

- No significant signal. UL set using CLs method
- Systematic uncertainties included in CLs
- Dominant syst: normalisation yield and stat. error of eff
- For combined low+high mass regions

 $\mathcal{B}(\Lambda_c^+ \to p \mu^+ \mu^-) < 2.90 \ (3.24) \times 10^{-8}$ at 90% (95%) CL

For low+high mass regions extrapolated to the full $m(\mu^{\dagger}\mu^{\dagger})$ (assuming phase-space model)

$$\mathcal{B}(\Lambda_c^+ \to p \mu^+ \mu^-) < 7.3 \ (8.2) \times 10^{-8}$$
 at 90% (95%) CL

Slight improvement compared to the result for Run-1 (3/fb) $\mathcal{B}(\Lambda_c^+ \to p\mu^+\mu^-) < 7.7 \ (9.6) \times 10^{-8}$ at 90% (95%) CL JolantaBrodzicka @ FPCP24

Preliminary

For combined low+high mass regions, m($\mu^+\mu^-$)<508 MeV or m($\mu^+\mu^-$)>1060 MeV

PRD97.091101 (2018)

Summary and Outlook

- Rare decays of charm hadrons complementary to beauty and strange decays
- LHCb is particularly suited for studying rare processes with muons
- New results with Run-1 & Run-2 data (9/fb)

 $\mathcal{B}(D^0 \to \mu^+ \mu^-) < 3.1 \, (3.5) \times 10^{-9} \text{ at } 90 \, (95)\% \text{ CL}$

 $\mathcal{B}(\Lambda_c^+ \to p \mu^+ \mu^-) < 7.3 \ (8.2) \times 10^{-8}$ at 90% (95%) CL

- **Still hunting for signals. Other observables to measure ACP, AFB**
- **Run-3 data taking just started**, **50/fb by 2026** (Talk on LHCb upgrades by Mark Tobin)

Backup slides

LHCB-PAPER-2024-005

$\Lambda t \rightarrow p \mu^{\dagger} \mu^{-}$: resonances

• Measured m($\mu^{\dagger}\mu^{-}$) for m($p\mu^{\dagger}\mu^{-}$) ±25 MeV of the Λ_{c}^{\dagger} mass

$\Lambda t^{\dagger} \rightarrow p \mu^{\dagger} \mu^{-}$ mass ranges and yields

Region	Range [MeV/ c^2]			
low-m region	$211.32 < m_{\mu^+\mu^-} < 507.86$			
high- m region	$1059.46 < m_{\mu^+\mu^-} < 1348.13$			
η region	$507.86 < m_{\mu^+\mu^-} < 587.86$			
ω region	$742.65 < m_{\mu^+\mu^-} < 822.65$			
ho region	$587.86 < m_{\mu^+\mu^-} < 742.66$			
	or 822.66 $< m_{\mu^+\mu^-} < 965.20$			
ϕ region	979.46 $< m_{\mu^+\mu^-} < 1059.46$			

$$\mathcal{B}(\Lambda_c^+ \to p\mu^+\mu^-) = \alpha \times N_{\text{sig}},$$
$$\alpha = \frac{\epsilon_{\text{norm}}}{\epsilon_{\text{sig}} \times N_{\text{norm}}} \times \mathcal{B}(\Lambda_c^+ \to p\phi) \times \mathcal{B}(\phi \to \mu^+\mu^-)$$

			Region	$\Lambda_c^+ ightarrow p \mu^+ \mu^-$	$\Lambda_c^+ \rightarrow p \pi^+ \pi^-$	Combinatorial	Significance
				yield	yield	yield	
Region	Fraction of all	Efficiency ratio	signal	18.4 ± 9.7	2.7 ± 7.0	681.2 ± 27.9	2.0σ
negion	generated events	$\epsilon_{\rm norm}/\epsilon_{\rm sig}$	low-m	1.4 ± 5.0	4.4 ± 3.8	240.7 ± 16.5	0.3σ
signal	0.39633	1.048 ± 0.060	high-m	20.7 ± 8.4	3.8 ± 3.8	431.9 ± 22.1	2.8σ
low-m	0.14289	0.991 ± 0.081	η	11.5 ± 4.8	2.2 ± 1.6	83.5 ± 9.8	3.0σ
high-m	0.25344	1.083 ± 0.073	ho	43.2 ± 9.7	20.4 ± 6.3	381.8 ± 21.6	5.6σ
			ω	80.9 ± 10.2	4.8 ± 2.1	101.0 ± 11.2	$> 7\sigma$
			ϕ	423.0 ± 21.5	3.8 ± 2.4	173.2 ± 14.5	$> 7\sigma$

JolantaBrodzicka @ FPCP24

$\Lambda \iota^{\dagger} \longrightarrow p \mu^{\dagger} \mu^{-}$: BF ratios and BFs

- For resonance regions
- $\begin{aligned} \frac{\mathcal{B}(\Lambda_c^+ \to p\omega(\to \mu^+\mu^-))}{\mathcal{B}(\Lambda_c^+ \to p\phi(\to \mu^+\mu^-))} &= 0.240 \pm 0.030 \text{ (stat.)} \pm 0.017 \text{ (syst.)},\\ \frac{\mathcal{B}(\Lambda_c^+ \to p\rho(\to \mu^+\mu^-))}{\mathcal{B}(\Lambda_c^+ \to p\phi(\to \mu^+\mu^-))} &= 0.229 \pm 0.051 \text{ (stat.)} \pm 0.022 \text{ (syst.)},\\ \frac{\mathcal{B}(\Lambda_c^+ \to p\eta(\to \mu^+\mu^-))}{\mathcal{B}(\Lambda_c^+ \to p\phi(\to \mu^+\mu^-))} &= 0.032 \pm 0.013 \text{ (stat.)} \pm 0.004 \text{ (syst.)},\end{aligned}$
- For non-resonant regions
 - Low-mass m($\mu^{+}\mu^{-}$)<508 MeV $\mathcal{B}(\Lambda_{c}^{+} \to p\mu^{+}\mu^{-}) < 0.93 \ (1.12) \times 10^{-8}$ at 90% (95%) CL
 - High-mass m($\mu^{+}\mu^{-}$)>1060 MeV $\mathcal{B}(\Lambda_{c}^{+} \rightarrow p\mu^{+}\mu^{-}) < 3.0 (3.3) \times 10^{-8}$ at 90% (95%) CL
 - Low+high mass regions

$$\frac{\mathcal{B}(\Lambda_c^+ \to p\mu^+\mu^-)}{\mathcal{B}(\Lambda_c^+ \to p\phi)\mathcal{B}(\phi \to \mu^+\mu^-)} < 0.09 \ (0.10) \ \text{ at } 90\% \ (95\%) \ \text{CL}$$

$\Lambda_{c}^{\dagger} \rightarrow p \mu^{\dagger} \mu^{-}$: systematics

Uncertainty source	$signal \ [\%]$	low - $m \ [\%]$	$high$ - $m \ [\%]$
Normalisation channel	5.60	5.60	5.60
Efficiency ratio (stat.)	5.71	8.18	6.76
Efficiency ratio (syst.)	1.65	1.65	1.65
Shape of signal	1.63	3.38	1.14
Shape of $\Lambda_c^+ \to p \pi^+ \pi^-$	0.10	3.20	0.24
Shape of combinatorial	0.05	0.26	0.20
$\Lambda_c^+ \rightarrow p \pi^+ \pi^-$ decay model	0.08	0.08	0.08
Fit bias	0.11	0.14	0.24
Total (B ratio)	9.80	12.22	10.39
${\cal B}(\Lambda_c^+\! ightarrow p\phi){\cal B}(\phi ightarrow \mu^+\mu^-)$	14.78	14.78	14.78
Total (\mathcal{B})	17.74	19.18	18.07

$D^0 \rightarrow \mu^+ \mu^-$: fits for 0.33 (BDT < 0.66)

$D^0 \rightarrow \mu^+ \mu^-$: fits for 0.15</box/BDT<0.33

$D^0 \rightarrow \mu^+ \mu^-$: normalisation & calibration

- $\blacksquare D^0 \longrightarrow K^{-}\pi^{+} \text{ and } D^0 \longrightarrow \pi^{-}\pi^{+} \text{ used for:}$
 - improving data-MC agreement in $p_T(D^0)$, $\eta(D^0)$ and track multiplicity
 - calibrating BDT efficiency and signal fraction per BDT range
 - normalisation of BF(D⁰→ $\mu^{\dagger}\mu^{-}$)
- Yields from fits to $\Delta m = m(D^{**}) m(D^0)$

$D^0 \rightarrow \mu^{\dagger} \mu^{-}$: misid rate and BDT calibration

- Left: efficiency for $\pi\pi$ to be misidentified as $\mu\mu$ for given muon ID cut
- Fraction of signal and reference candidates in BDT intervals

