

Radiative b-hadron decays at LHCb

Yingrui Hou (LPCA, CNRS) On behalf of the LHCb collaboration

22nd Conference on Flavor Physics and CP Violation (FPCP 2024) Chulalongkorn University, 27th-31st May 2024

Radiative b-hadron decays

• On the theory side

FCNC is strongly suppressed by the Standard Model (SM)
 Sensitive to indirect effects of New Physics (NP)
 Access to test couplings to 3rd generation guarks

- On the measurement side
 - > Search for the unobserved decays
 - -> measurement of branching fraction/upper limit
 - > Amplitude study for the multibody decays
 - -> hadron spectrum at photon pole
 - -> photon polarisation

LHCb: A flavour physics detector with high luminosity

- > Forward spectrometer, focusing on $b\overline{b}$ production
- > Performance
 - $\epsilon_{tracking} \sim 96\%$

• ECAL resolution:
$$1\% + \frac{10\%}{\sqrt{E(\text{GeV})}}$$

Searching for the unobserved decays

 $B_s^0 \rightarrow \mu^+ \mu^- \gamma$: <u>arxiv.2404.03375</u>

Searching for $B_s^0 \rightarrow \mu^+ \mu^- \gamma$ decay

Sensitive to a different set of Wilson coefficients: (C_7, C_9, C_{10}) vs (C_S, C_P, C_{10})

The photon lifts the helicity suppression making $Br(B_s^0 \to \mu^+ \mu^-) \sim Br(B_s^0 \to \mu^+ \mu^- \gamma)$

• $B_s^0 \rightarrow \mu^+ \mu^- \gamma$ vs. $B_s^0 \rightarrow \mu^+ \mu^-$

 (\cdot)

arxiv.2404.03375

Searching for $B_s^0 \rightarrow \mu^+ \mu^- \gamma$ decay

arxiv.2404.03375

Strategy

- 2016-2018 data (5.4fb⁻¹)
- Searching in 3 q^2 regions (ϕ -vetoed bin I is also studied)
- Control channel: $B_s^0 \rightarrow \phi(KK)\gamma$
 - Check the agreement between data and simulation
- Normalisation channel: $B_s^0 \rightarrow J/\psi(\mu\mu)\eta(\gamma\gamma)$
 - High statistics + Similar final state to the signal

Mass fit of $B_s^0 \rightarrow \mu\mu\gamma$ in all q^2 regions

Searching for $B_s^0 \rightarrow \mu^+ \mu^- \gamma$ decay

Results

- First direct search of $B^0_s \rightarrow \mu\mu\gamma$ at low q^2
- No statistically significant signal is observed in all q^2 regions
- Constrain in the theoretical context
 - Indirect method reaches lower ULs
 - Direct search is more sensitive to the full q^2 spectrum
 - New constrains in the low q^2 region
- Run3 data will improve the sensitivity of the search

$$\mathcal{B}(B_s^0 \to \mu^+ \mu^- \gamma)_{\rm I} < 3.6 \ (4.2) \times 10^{-8}, \\ \mathcal{B}(B_s^0 \to \mu^+ \mu^- \gamma)_{\rm II} < 6.5 \ (7.7) \times 10^{-8}, \\ \mathcal{B}(B_s^0 \to \mu^+ \mu^- \gamma)_{\rm III} < 3.4 \ (4.2) \times 10^{-8}, \\ \mathcal{B}(B_s^0 \to \mu^+ \mu^- \gamma)_{\rm I, \ with \ \phi \ veto} < 2.9 \ (3.4) \times 10^{-8}, \\ \mathcal{B}(B_s^0 \to \mu^+ \mu^- \gamma)_{\rm comb.} < 2.5 \ (2.8) \times 10^{-8}, \end{cases}$$

arxiv.2404.03375

Amplitude analyses of the multibody decays

 $\Lambda_b \rightarrow pK^-\gamma$: arxiv.2403.03710 $B_s^0 \rightarrow KK\gamma$: LHCb-paper-2024-002 (in preparation)

Amplitude analysis of $\Lambda_b \rightarrow pK^-\gamma$

- The $\Lambda_b \rightarrow pK\gamma$ provides information about the composition of the pK^- spectrum with unique access to the heavier Λ states.
 - Could constitute useful input to future measurements of photon polarization in $b\to s\gamma$
 - Vital input to low energy-QCD (light baryon) theory
- Strategy
 - Using full Run1 and Run2 data
 - Building amplitude model with helicity formalism
 - Performing unbinned maximum likelihood fit to the Dalitz plane $(m_{pk}^2, m_{p\gamma}^2)$

arxiv.2403.03710

9

Amplitude analysis of $\Lambda_b \rightarrow pK^-\gamma$

- The default fit model
 - All known Λ states + a nonresonant contribution $(J^P = \frac{3}{2})$

inte	erf. $(1/2)^+$	$- \Lambda(1520)$	$- \Lambda(1810)$	—	$\Lambda(2110)$
inte	erf. $(1/2)^{-}$	- $\Lambda(1600)$	$- \Lambda(1820)$	—	A(2350)
int	erf. $(3/2)^{-}$	$- \Lambda(1670)$	$ \Lambda(1830)$		$NR((3/2)^{-})$
inte	erf. $(5/2)^+$	$- \Lambda(1690)$	$ \Lambda(1890)$	+	Model
$-\Lambda(1)$	405)	- $\Lambda(1800)$	$ \Lambda(2100)$	+	Data

- The uncertainties
 - Resonance parameters (external input)
 - Dominant uncertainty
 - Statistics
 - Model-related systematic uncertainties
 - Model choice and mass resolution
 - Other uncertainties
 - Mass fit, acceptance model, background estimation

Amplitude analysis of $\Lambda_b \rightarrow pK^-\gamma$

• Results are given in terms of fit and interference fractions

- The largest resonant contributions are $\Lambda(1800), \Lambda(1600), \Lambda(1890)$ and $\Lambda(1520)$
- Compared to $\Lambda_b \rightarrow J/\psi p K$
 - Contributions of $\Lambda(1405)$, $\Lambda(1810)$ are smaller, while contribution of $\Lambda(1820)$ is larger
 - Heavy resonances $\Lambda(1890),\,\Lambda(2100),\,\Lambda(2110)$ and $\Lambda(2350)$ are larger in the radiative case
- Future measurements and data will improve the precision

arxiv.2403.03710

Amplitude analysis of $B_s^0 \rightarrow KK\gamma$

- One of the golden channels of $b \rightarrow s\gamma$ transition
 - Dominated by a virtual intermediate top quark coupled to a W boson
 - Photon polarisation in $B^0_s \to \phi \gamma$ has been measured by LHCb
 - ~1.5 2σ compatibility with the SM
 - Possible new radiative decay modes with *KK* resonance?
- Strategy
 - Full Run1 and Run2 data
 - Building amplitude with isobar model in the folded helicity semi-plane $(m_{KK}, |\cos \theta_{KK}|)$
 - Decay rate asymmetry of B_s is neglected
 - Mass resolution is included

LHCb-paper-2024-002

Amplitude analysis of $B_s^0 \rightarrow KK\gamma$

- •KK states are well-established with large $\Delta {\rm lnL}$ gain and isobar significance
- •Nonresonant state: P-wave (1^{--}) , uniformly in mass with constant phase
- Several distinct tensor states give similar significances.

State	J^{PC}	$\mu_{ m R}~({ m MeV}/c^2)$	$\Gamma_{\rm R}~({\rm MeV})$	$\mid \mathcal{B}_{K^+K^-}$ (%)	$\left c_{\mathrm{R}} \right (\times 10)$	$(\chi^2_{ c_{\rm R} })$	$\Delta \ln \mathcal{L}$
$\phi(1020)$	1	1019.461 ± 0.016	4.249 ± 0.013	49.2 ± 0.5	10 (fix)	-	-
$f_2'(1525)$	2^{++}	1517.4 ± 2.5	86 ± 5	43.8 ± 1.1	4.16 ± 0.09	(2270)	-
$\phi(1680)$	1	1689 ± 12 (*)	211 ± 24 (*)	seen	2.40 ± 0.15	(266)	+304
$f_2(1270)$	2^{++}	1275.5 ± 0.8	$186.6 \stackrel{+2.2}{_{-2.5}}$	$2.30 \ ^{+0.25}_{-0.20}$	1.07 ± 0.17	(41)	+18
$\phi_3(1850)$	3	1854 ± 7	$87 \ ^{+28}_{-23}$	seen	0.61 ± 0.16	(14)	+15
$f_2(2010)$	2^{++}	$2011 \stackrel{+62}{_{-76}}$	$202 \ ^{+67}_{-62}$	seen	0.74 ± 0.18	(16)	+13
$(KK)_{NR}$	1		-		0.79 ± 0.26	(10)	+17

Amplitude analysis of $B_s^0 \rightarrow KK\gamma$

LHCb-paper-2024-002

- Several quasi-degenerate solutions with similar ΔLL
 - Weakly constrained interference pattern
 - Preferred solution is with the smallest fit-fractions and constructive interferences of the individual states

2024/5/30

Amplitude analysis of $B_s^0 \rightarrow KK\gamma$

•Best fit

- Signal yield: $(44.4 \pm 0.5) \times 10^3$
- The overall tensor states (f_2) fitfraction is $(16.8 \pm 0.5 \pm 0.7)\%$
- A new radiative decay is observed for the first time

 $\frac{\mathcal{B}(B_s^0 \to f_2' \gamma)}{\mathcal{B}(B_s^0 \to \phi \gamma)} = 0.194^{+0.009}_{-0.008} \text{ (stat)}^{+0.014}_{-0.005} \text{ (syst)} \pm 0.005 \text{ (BR)}$

• Mass and width of $f'_2(1525)$ are measured in good agreement with current world average and measurements

Conclusions

- •New results from LHCb
 - First direct search of $B_s \rightarrow \mu^+ \mu^- \gamma$ (ULs in low q^2 region)
 - Amplitudes of $\Lambda_b \to pK^-\gamma$ and $B_s \to K^+K^-\gamma$ (new decay observed!)
- •The precision and sensitivity of the LHCb radiative decay measurements can be improved with Run3 data and results from other experiments
- More results from Run1 and Run2 data are undergoing
 CPV and branching fraction measurements, amplitude analyses...

• Stay tuned for the coming results!

• Mass fit to the control channel and normalization channel data.

•CL scans in different q^2 regions

 $\Lambda_b \to p K \gamma$

 $\Lambda_b \to p K \gamma$

• Fit and interference fractions

Observable	Value	$\sigma_{ m stat}$	$\sigma_{ m syst}^{ m internal}$	$\sigma_{\rm syst}^{\rm external}$	$\sigma_{\rm syst}$	A(1405) A(1670)	-0.7	+0.1	+0.2	+0.5	+0.5
$\Lambda(1405)$	3.5	$^{+0.3}_{-0.4}$	$+0.9 \\ -0.0$	$^{+1.3}_{-0.6}$	$^{+1.9}_{-0.3}$	M(1400), M(1010)	-0.1	-0.2	-0.2	-0.8	-0.9
$\Lambda(1520)$	10.4	$+0.4 \\ -0.2$	$+0.7 \\ -0.0$	$^{+1.7}_{-1.6}$	$^{+2.2}_{-1.2}$	$\Lambda(1405), \Lambda(1800)$	7.6	$^{+0.7}_{-0.8}$	$+1.2 \\ -2.0$	$^{+0.6}_{-3.5}$	$^{+0.9}_{-4.6}$
$\Lambda(1600)$	15.6	$^{+0.6}_{-0.9}$	$+0.8 \\ -0.2$	$^{+3.9}_{-5.0}$	$^{+4.3}_{-4.6}$	A(1520) A(1690)	0.5	+0.5	+0.3	+0.6	+0.5
$\Lambda(1670)$	1.3	$^{+0.2}_{-0.2}$	$+0.3 \\ -0.2$	$^{+1.2}_{-0.3}$	$^{+1.3}_{-0.2}$	1(1020), 1(1000)	0.0	-0.3	-0.9	-2.6	-3.0
$\Lambda(1690)$	7.7	$^{+0.4}_{-0.8}$	$^{+1.8}_{-0.1}$	$^{+5.1}_{-1.0}$	$^{+6.2}_{-0.2}$	$\Lambda(1520), \mathrm{NR}(3/2^{-})$	-0.6	$^{+0.4}_{-0.4}$	$+1.0 \\ -0.6$	$^{+1.6}_{-3.2}$	$^{+2.1}_{-3.0}$
$\Lambda(1800)$	18.3	$^{+1.3}_{-1.6}$	$+1.4 \\ -1.1$	$^{+3.2}_{-6.0}$	$^{+3.2}_{-6.2}$	A(1600) A(1810)	_10	+1.5	+1.3	+4.1	+3.9
$\Lambda(1810)$	0.1	$^{+0.9}_{-0.4}$	$+1.7 \\ -0.4$	$^{+4.0}_{-0.7}$	$^{+4.8}_{-0.7}$	M(1000), M(1010)	-1.9	-1.0	-1.5	-2.9	-3.6
$\Lambda(1820)$	8.3	$^{+0.4}_{-0.7}$	$-0.2 \\ -1.4$	$^{+1.9}_{-4.8}$	$^{+1.0}_{-5.7}$	$\Lambda(1670), \Lambda(1800)$	-4.8	$^{+0.5}_{-0.4}$	$+0.4 \\ -0.6$	$^{+1.5}_{-2.0}$	$^{+1.5}_{-2.1}$
$\Lambda(1830)$	0.3	$^{+0.4}_{-0.4}$	$+0.6 \\ -0.5$	$^{+1.5}_{-0.9}$	$^{+1.6}_{-0.9}$	4(1000) ND $(2/2-)$	2.0	+0.4	+0.1	+1.2	+0.3
$\Lambda(1890)$	11.2	$^{+0.7}_{-0.6}$	$+0.5 \\ -0.6$	$^{+4.3}_{-5.1}$	$^{+4.6}_{-4.9}$	$\Lambda(1090), \mathrm{NK}(3/2)$	3.9	-0.4	-3.0	-2.7	-4.7
$\Lambda(2100)$	7.3	$^{+0.5}_{-0.5}$	$^{+1.1}_{-0.6}$	$^{+1.1}_{-2.8}$	$^{+1.4}_{-2.9}$	$\Lambda(1820), \Lambda(2110)$	1.1	$^{+0.7}_{-0.5}$	$+0.2 \\ -2.1$	+2.5 -3.9	$^{+1.9}_{-4.8}$
$\Lambda(2110)$	6.5	$^{+0.6}_{-0.7}$	$+1.7 \\ -0.0$	$^{+5.4}_{-0.9}$	$^{+6.3}_{-0.2}$			0.0	2.1	0.5	4.0
$\Lambda(2350)$	1.0	$^{+0.2}_{-0.1}$	$+0.8 \\ -0.0$	$^{+0.0}_{-0.2}$	$^{+0.8}_{-0.1}$						
$NR(3/2^{-})$	2.8	$^{+0.5}_{-0.4}$	$+0.2 \\ -1.9$	$^{+3.0}_{+0.3}$	$^{+2.4}_{-1.3}$						