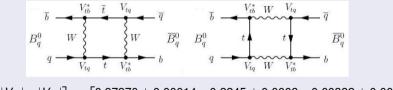
Precision measurements of B meson decays at ATLAS

# Marek Biros on behalf of The ATLAS Collaboration Charles University

28<sup>th</sup> May 2024 FPCP 2024 Bangkok


# Motivation

Measurement of the CP-violating phase  $\phi_s$  in the  $B_s^0 \rightarrow J/\psi \phi$  decay

- Analysis using years 2015, 2016 and 2017 [EPJC 81 (2021) 342]
- The HL-LHC prospects [ATLAS Note]

#### Theoretical description

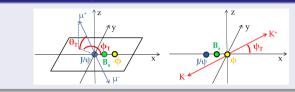
• In Standard Model the CP violation occurs due to interference between a direct decay and a decay with  $B_s^0 - \bar{B}_s^0$  mixing. Described by the CKM matrix elements.  $\phi_s \simeq 2 \arg[-(V_{ts} V_{tb}^*)/(V_{cs} V_{cb}^*)]$ .



 $\begin{bmatrix} |V_{ud}| & |V_{us}| & |V_{ub}| \\ |V_{cd}| & |V_{cs}| & |V_{cb}| \\ |V_{td}| & |V_{ts}| & |V_{tb}| \end{bmatrix} = \begin{bmatrix} 0.97370 \pm 0.00014 & 0.2245 \pm 0.0008 & 0.00382 \pm 0.00024 \\ 0.221 \pm 0.004 & 0.987 \pm 0.011 & 0.0410 \pm 0.0014 \\ 0.0080 \pm 0.0003 & 0.0388 \pm 0.0011 & 1.013 \pm 0.030 \end{bmatrix}$ 

### Motivation

### New physics


• In the presence of new physics phenomena, additional sources of CPV can arise

# CPV in $B_s^0 \to J/\psi(\mu^+\mu^-)\phi(K^+K^-)$

- CPV is described by the parameters  $\phi_s$ ,  $\Gamma_s^L$ ,  $\Gamma_s^H$  ( $\Gamma_s$ ,  $\Delta\Gamma_s$ )
- $\phi_s$  can be predicted in the SM with high precision (3%)
  - $\phi_s = -0.03696^{+0.00072}_{-0.00082}$  rad by [CKMFitter],  $\phi_s = -0.03700 \pm 0.00104$  rad according to [UTfit]
- $\Gamma_s$  can be predicted as well (but with higher uncertainties):
  - Γ<sub>s</sub> = 0.63<sup>+0.11</sup><sub>-0.07</sub> [JHEP 01 (2023) 004]
- $\Gamma_s/\Gamma_d$  (theoretical uncertainties cancel in ratio)
  - Γ<sub>s</sub>/Γ<sub>d</sub> = 1.003 ± 0.006 [JHEP 01 (2023) 004]
  - ATLAS is working on a precise measurement of  $\tau_{B_{a}^{0}}$

# Decay description - $B_s^0 ightarrow J/\psi \phi$

#### Accessible through a measurement of the time dependent angular distribution



$$rac{d^4\Gamma}{dtd\Omega} = \sum_{k=1}^{10} O^k(t) g^k( heta_{ au}, \Psi_{ au}, \phi_{ au})$$

#### The unbinned maximum likelihood fit

- Observables:  $B_s^0$  mass  $(m_i)$ , decay time  $(t_i)$  and the decay angles  $\Omega = (\theta_T, \Psi_T, \phi_T)$
- Conditional obsevables:  $\sigma_{m_i}$ ,  $\sigma_{t_i}$ ,  $p_{T_i}$  and *B*-tagging probability: P(B|Q)
- Physics parameters:
  - CPV phase  $\phi_s$ , decay width and difference:  $\Gamma_s$ ,  $\Delta\Gamma_s$
  - decay amplitudes and phases:  $|A_0(0)|^2$ ,  $|A_{\parallel}(0)|^2$ ,  $\delta_{\parallel}$ ,  $\delta_{\perp}$  and S-wave aplitude and phase:  $|A_S(0)|^2$ ,  $\delta_S$
  - difference in mass of both states Δm<sub>s</sub> fixed to PDG, λ fixed to 1 (no direct CPV assumption)
- Likelihood has 4 components signal,  $B_d^0$ ,  $\Lambda_b$  and combinatorial background (see bckup)

# 1. step - $J/\psi$ reconstruction

- $\mu$  triggers (p<sub>T</sub>( $\mu$ ) > 4 GeV or 6 GeV)
- $\mu^+\mu^-$  refitted to a common vertex (  $\chi^2/ndof < 10$ )
- 3 pseudorapidity bins with different  $m(\mu\mu)$  window

#### 2. step - $\phi$ reconstruction

- *p*<sub>T</sub>(*K*<sup>±</sup>) > 1 GeV
- *m*(*KK*) ∈ (1008.5, 1030.5) MeV

# 3. step - $B^0 \rightarrow J/\psi(\mu^+\mu^-)\phi(K^+K^-))$

- 4 tracks ID momentum measurement only
- $B^0$  candidates refitted from  $J/\psi$  and  $\phi$ 
  - $m(J/\psi)$  fixed to the PDG value
  - m(B<sup>0</sup>) ∈ (5150, 5650) MeV
  - $\chi^2/ndof(SV) < 3$
  - *B* candidate with the smallest  $\chi^2$ /ndof is selected
- In 2015-2017, 2 977 526  $B_s^0$  candidates were collected.

# Opposite-site tagging

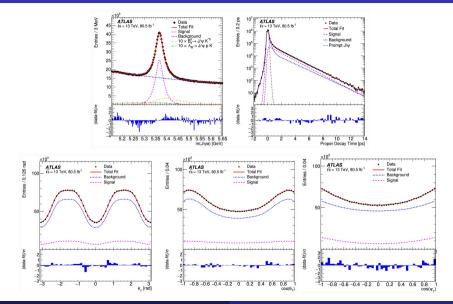
- Four taggers: Tight muon, electron, Low-p<sub>T</sub> muon, b-jet
- Key variable: Q<sub>X</sub> charge of p<sub>T</sub>-weighted tracks in a cone (ΔR) around the opposite side primary object (μ, e, b-jet), used to build per-candidates B<sub>s</sub> tag

probability:  $Q_X = rac{\Sigma_l^{N_{tracks}} p_{T_l}^{\kappa_s} q_l}{\Sigma_l^{N_{tracks}} p_{T_l}^{\kappa_s}}$ 

# Taggers performance

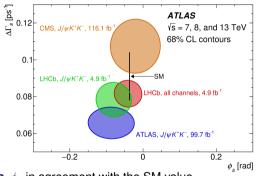
• Calibration on self-tagged  $B^{\pm} 
ightarrow J/\psi K^{\pm}$  (data)

| Tag method      | $\epsilon_x$ [%] | $D_x$ [%]      | $T_x$ [%]         |
|-----------------|------------------|----------------|-------------------|
| Tight muon      | $4.50 \pm 0.01$  | $43.8 \pm 0.2$ | $0.862 \pm 0.009$ |
| Electron        | $1.57 \pm 0.01$  | $41.8 \pm 0.2$ | $0.274 \pm 0.004$ |
| Low- $p_T$ muon | $3.12 \pm 0.01$  | $29.9 \pm 0.2$ | $0.278 \pm 0.006$ |
| Jet             | $12.04 \pm 0.02$ | $16.6 \pm 0.1$ | $0.334 \pm 0.006$ |
| Total           | $21.23 \pm 0.03$ | $28.7\pm0.1$   | $1.75 \pm 0.01$   |


- $\epsilon_x$  efficiency,
- D<sub>x</sub> effective dilution,

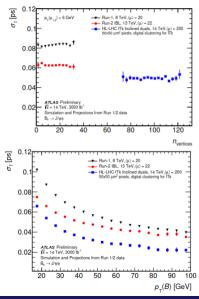
 $\bar{B}_{u,d,s}$ 

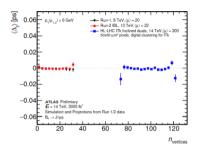
• T<sub>x</sub> - tagging power




#### Mass and Proper decay time projections

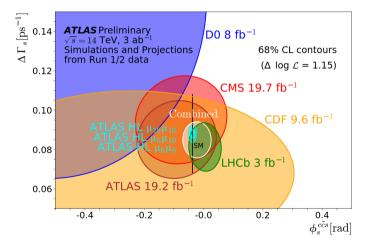



| Parameter                            | Value  | Statistical | Systematic  |  |  |
|--------------------------------------|--------|-------------|-------------|--|--|
|                                      |        | uncertainty | uncertainty |  |  |
| $\phi_s$ [rad]                       | -0.081 | 0.041       | 0.020       |  |  |
| $\Delta\Gamma_s$ [ps <sup>-1</sup> ] | 0.0607 | 0.0047      | 0.0025      |  |  |
| $\Gamma_s$ [ps <sup>-1</sup> ]       | 0.6687 | 0.0015      | 0.0016      |  |  |
| $ A_{\parallel}(0) ^2$               | 0.2213 | 0.0019      | 0.0023      |  |  |
| $ A_0(0) ^2$                         | 0.5131 | 0.0013      | 0.0034      |  |  |
| $ A_{S}(0) ^{2}$                     | 0.0321 | 0.0033      | 0.0045      |  |  |
| $\delta_{\perp} - \delta_S$ [rad]    | -0.25  | 0.05        | 0.04        |  |  |
| Solution (a)                         |        |             |             |  |  |
| $\delta_{\perp}$ [rad]               | 3.12   | 0.11        | 0.05        |  |  |
| $\delta_{\parallel}$ [rad]           | 3.35   | 0.05        | 0.08        |  |  |
| Solution (b)                         |        |             |             |  |  |
| $\delta_{\perp}$ [rad]               | 2.91   | 0.11        | 0.05        |  |  |
| $\delta_{\parallel}$ [rad]           | 2.94   | 0.05        | 0.08        |  |  |


Combined result with Run1 [EPJC 81 (2021) 342]:  $\phi_s = -0.087 \pm 0.036 (stat.) \pm 0.021 (syst.)$ 



- $\phi_s$  in agreement with the SM value
- Statistical uncertainty is still dominating
- ATLAS is consistent with CMS and LHCb in  $\phi_s$


#### Expected performance of the new Inner Detector updates for HL-LHC





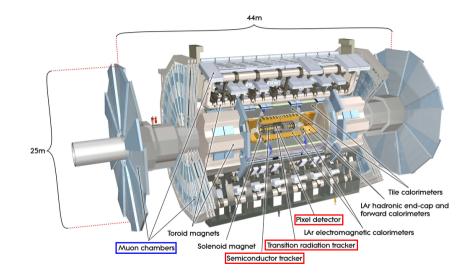
#### Lifetime measurement precision

- Run 2: The IBL was added to the ID
- HL-LHC: The ID replacement by ITk
- Even for higher number *n<sub>vertices</sub>*, the lifetime resolution will be improved



#### Conclusion

Results from ATLAS 2015-2017 combined with Run 1 were presented


- Measurement is consistent with the SM prediction and LHCb and CMS measurements
  - $\phi_s^{\text{ATLAS}} = -0.087 \pm 0.036 \text{ (stat.)} \pm 0.021 \text{ (syst.)}$
  - $\phi_s^{SM} = -0.03696^{+0.00072}_{-0.00082}$  rad (CKMFitter),  $\phi_s^{SM} = -0.03700 \pm 0.00104$  rad (UTfit)

Expected improvement of the lifetime measurement precision for HL-LHC was reported

#### Stay tuned for more results

- High precision  $B_d$  lifetime measurement with  $B_d^0 \rightarrow J/\psi K^*$  (with  $\Gamma_s/\Gamma_d$  ratio)
- Measurement of the CP violation in  $B_s \rightarrow J/\psi \phi$  with full Run 2 statistics (to add 60  $fb^{-1}$  from 2018)
- and more ...

# Thank you for your attention!



# Probability density function for $B^0_s ightarrow J/\psi \phi$

| k  | $O^{(k)}(t)$                                                                                                                                                                              | $g^{(k)}(	heta_T,\psi_T,\phi_T)$                                         |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------|
| 1  | $\frac{1}{2} A_0(0) ^2 \left[ (1+\cos\phi_s) e^{-\Gamma_{\rm L}^{(s)}t} + (1-\cos\phi_s) e^{-\Gamma_{\rm H}^{(s)}t} \pm 2e^{-\Gamma_s t} \sin(\Delta m_s t) \sin\phi_s \right]$           | $2\cos^2\psi_T(1-\sin^2\theta_T\cos^2\phi_T)$                            |
| 2  | $\frac{1}{2} A_{\parallel}(0) ^{2}\left[(1+\cos\phi_{s})e^{-\Gamma_{\rm L}^{(s)}t}+(1-\cos\phi_{s})e^{-\Gamma_{\rm H}^{(s)}t}\pm 2e^{-\Gamma_{s}t}\sin(\Delta m_{s}t)\sin\phi_{s}\right]$ | $\sin^2\psi_T(1-\sin^2\theta_T\sin^2\phi_T)$                             |
| 3  | $\frac{1}{2} A_{\perp}(0) ^{2}\left[(1-\cos\phi_{s})e^{-\Gamma_{L}^{(s)}t}+(1+\cos\phi_{s})e^{-\Gamma_{H}^{(s)}t}\mp 2e^{-\Gamma_{s}t}\sin(\Delta m_{s}t)\sin\phi_{s}\right]$             | $\sin^2\psi_T\sin^2\theta_T$                                             |
| 4  | $\frac{1}{2} A_0(0)  A_{\parallel}(0) \cos\delta_{\parallel}$                                                                                                                             | $\frac{1}{\sqrt{2}}\sin 2\psi_T \sin^2 \theta_T \sin 2\phi_T$            |
|    | $\left[ (1 + \cos \phi_s)  e^{-\Gamma_{\rm L}^{(s)}t} + (1 - \cos \phi_s)  e^{-\Gamma_{\rm H}^{(s)}t} \pm 2 e^{-\Gamma_s t} \sin(\Delta m_s t) \sin \phi_s \right]$                       |                                                                          |
| 5  | $ A_{\parallel}(0)  A_{\perp}(0) [\frac{1}{2}(e^{-\Gamma_{\rm L}^{(s)}t} - e^{-\Gamma_{\rm H}^{(s)}t})\cos(\delta_{\perp} - \delta_{\parallel})\sin\phi_{s}$                              | $-\sin^2\psi_T\sin2	heta_T\sin\phi_T$                                    |
|    | $\pm e^{-\Gamma_s t} (\sin(\delta_{\perp} - \delta_{\parallel}) \cos(\Delta m_s t) - \cos(\delta_{\perp} - \delta_{\parallel}) \cos \phi_s \sin(\Delta m_s t))]$                          |                                                                          |
| 6  | $ A_0(0)  A_{\perp}(0) [\frac{1}{2}(e^{-\Gamma_{\rm L}^{(s)}t} - e^{-\Gamma_{\rm H}^{(s)}t})\cos\delta_{\perp}\sin\phi_s$                                                                 | $\frac{1}{\sqrt{2}}\sin 2\psi_T \sin 2\theta_T \cos \phi_T$              |
|    | $\pm e^{-\Gamma_s t} (\sin \delta_{\perp} \cos(\Delta m_s t) - \cos \delta_{\perp} \cos \phi_s \sin(\Delta m_s t))]$                                                                      |                                                                          |
| 7  | $\frac{1}{2} A_{S}(0) ^{2}\left[(1-\cos\phi_{s})e^{-\Gamma_{L}^{(s)}t}+(1+\cos\phi_{s})e^{-\Gamma_{H}^{(s)}t}\mp 2e^{-\Gamma_{s}t}\sin(\Delta m_{s}t)\sin\phi_{s}\right]$                 | $\frac{2}{3}\left(1-\sin^2\theta_T\cos^2\phi_T\right)$                   |
| 8  | $ A_{S}(0)  A_{\parallel}(0) [\frac{1}{2}(e^{-\Gamma_{L}^{(s)}t}-e^{-\Gamma_{H}^{(s)}t})\sin(\delta_{\parallel}-\delta_{S})\sin\phi_{s}$                                                  | $\frac{1}{3}\sqrt{6}\sin\psi_T\sin^2\theta_T\sin 2\phi_T$                |
|    | $\pm e^{-\Gamma_{s}t}(\cos(\delta_{\parallel}-\delta_{S})\cos(\Delta m_{s}t)-\sin(\delta_{\parallel}-\delta_{S})\cos\phi_{s}\sin(\Delta m_{s}t))]$                                        | 5                                                                        |
| 9  | $\frac{1}{2} A_S(0)  A_{\perp}(0) \sin(\delta_{\perp}-\delta_S)$                                                                                                                          | $\frac{1}{3}\sqrt{6}\sin\psi_T\sin 2\theta_T\cos\phi_T$                  |
|    | $\left[ (1 - \cos \phi_s) e^{-\Gamma_{\rm L}^{(s)}t} + (1 + \cos \phi_s) e^{-\Gamma_{\rm H}^{(s)}t} \mp 2 e^{-\Gamma_s t} \sin(\Delta m_s t) \sin \phi_s \right]$                         |                                                                          |
| 10 | $ A_0(0)  A_S(0) [\frac{1}{2}(e^{-\Gamma_{\rm H}^{(s)}t} - e^{-\Gamma_{\rm L}^{(s)}t})\sin\delta_S\sin\phi_s$                                                                             | $\frac{4}{3}\sqrt{3}\cos\psi_T\left(1-\sin^2\theta_T\cos^2\phi_T\right)$ |
|    | $\pm e^{-\Gamma_s t} (\cos \delta_S \cos(\Delta m_s t) + \sin \delta_S \cos \phi_s \sin(\Delta m_s t))]$                                                                                  | · · · · · · · · · · · · · · · · · · ·                                    |

# Maximal Likelihood Fit: mass + lifetime + 3 angles + conditional observables

The unbinned maximum likelihood fit was performed for:

- Observables:  $B_s^0$  mass  $(m_i)$ , decay time  $(t_i)$  and the decay angles  $\Omega = (\theta_T, \Psi_T, \phi_T)$
- Conditional obsevables:  $\sigma_{m_i}$ ,  $\sigma_{t_i}$ ,  $p_{T_i}$  and *B*-tagging probability: P(B|Q)
- Physics parameters:
  - CPV phase  $\phi_s$
  - Decay widths:  $\Delta \Gamma_s$ ,  $\Gamma_s$
  - Decay amplitudes:  $|A_0(0)|^2, |A_{\parallel}(0)|^2, \delta_{\parallel}, \delta_{\perp}$
  - S-wave:  $|A_S(0)|^2$ ,  $\delta_S$
  - and  $\Delta m_s$  fixed to PDG,  $\lambda=1$  (no direct CPV)

$$\begin{aligned} \ln \mathcal{L} &= \sum_{i=1}^{N_{events}} \{ w_i \cdot \ln(f_s \cdot \mathcal{F}_s(m_i, t_i, \sigma_m, \sigma_t, \Omega_i, P(B|Q), p_{T_i}) \\ &+ f_s \cdot f_{B_d^0} \cdot \mathcal{F}_{B_d^0}(m_i, t_i, \sigma_m, \sigma_t, \Omega_i, P(B|Q), p_{T_i}) \\ &+ f_s \cdot f_{\Lambda_b} \cdot \mathcal{F}_{\Lambda_b}(m_i, t_i, \sigma_m, \sigma_t, \Omega_i, P(B|Q), p_{T_i}) \\ &+ (1 - f_s \cdot (1 + f_{B_d^0} + f_{\Lambda_b})) \cdot \mathcal{F}_{bkg}(m_i, t_i, \sigma_m, \sigma_t, \Omega_i, P(B|Q), p_{T_i})) \} \end{aligned}$$