New Physics Prospects in Semileptonic $\Lambda_b \to \Lambda_c^*$ Decays

C P Haritha

School of Physics University of Hyderabad Hyderabad, India

May 27, 2024

C P Haritha

FPCP 2024

May 27, 2024

► Motivation

- ▶ Theoretical Framework for the $\Lambda_b \to \Lambda_c^* \tau \bar{\nu}_{\tau}$ decays
- Constraints on New Couplings
- ► Results
- ► Summary

- 2

2

▲□▶ ▲圖▶ ▲厘▶ ▲厘≯

Flavor Anomalies

▶ Flavor anomalies in *b*-hadron decays - BSM physics.

► Discrepancies seen in decays:
$$b \to s \ell^+ \ell^-$$

 $b \to c \tau^- \overline{\nu}_\tau$

► Lepton flavor universality (LFU)

$$R(H_s) = \frac{\mathcal{B}(H_b \to H_s \mu^+ \mu^-)}{\mathcal{B}(H_b \to H_s e^+ e^-)}$$
$$R(H_c) = \frac{\mathcal{B}(H_b \to H_c \tau \bar{\nu}_{\tau})}{\mathcal{B}(H_b \to H_c \ell \bar{\nu}_{\ell})}$$

C P Haritha

FPCP 2024

May 27, 2024

æ

・ロト ・部ト ・ヨト ・ヨ

Flavor-changing neutral currents $(b \to s \ell^+ \ell^-)$

▶ The ratio,

$$R_{K^{(*)}} = \frac{\mathcal{B}(\bar{B} \to K^{(*)} \mu^+ \mu^-)}{\mathcal{B}(\bar{B} \to K^{(*)} e^+ e^-)}$$

▶ Earlier , $R_{K^{(*)}}^{Expt} < R_{K^{(*)}}^{SM}$. The latest LHCb results predict $R_{K^{(*)}} \simeq 1$, in agreement with the SM.¹

Tensions with the SM in :

• Angular $B \to K^* \mu^+ \mu^-$ observable P'_5 .²

► Total branching ratio and angular observables in $B_s \to \phi \mu^+ \mu^$ and $\mathcal{B}(B \to K \mu^+ \mu^-).^{3,4}$

▶ New Physics (NP) models: Z', Leptoquarks.

4

¹R. Aaij et al. [LHCb]; Phys. Rev. Lett. 131, no.5, 051803 (2023)

²Sebastien Descotes-Genon et al.; JHEP 01, 048 (2013)

 $^{^{3}}$ R. Aaij et al. (LHCb); JHEP 09, 179 (2015)

⁴R. Aaij et al. (LHCb); JHEP 06, 133 (2014)

Flavor-changing charged currents $(b \to c \tau^- \overline{\nu}_{\tau})$

▶ The world average value of R_D and R_{D^*} reported by HFLAV⁵,

$$R_D^{Expt} = \frac{\mathcal{B}(\bar{B} \to D\tau^- \bar{\nu}_\tau)}{\mathcal{B}(\bar{B} \to D\ell^- \bar{\nu}_\ell)} = 0.357 \pm 0.029$$
$$R_{D^*}^{Expt} = \frac{\mathcal{B}(\bar{B} \to D^* \tau^- \bar{\nu}_\tau)}{\mathcal{B}(\bar{B} \to D^* \ell^- \bar{\nu}_\ell)} = 0.284 \pm 0.012$$

deviate from their SM predictions, $R_D^{\text{SM}} = 0.298 \pm 0.004$, $R_{D^*}^{\text{SM}} = 0.254 \pm 0.005$ by 2σ and 2.2σ , respectively.

► LHCb⁶ measured the value of $R_{J/\psi}$ $R_{J/\psi}^{Expt} = \frac{\mathcal{B}(B_c \to J/\psi \tau \bar{\nu}_{\tau})}{\mathcal{B}(B_c \to J/\psi \mu \bar{\nu}_{\mu})} = 0.71 \pm 0.17 \pm 0.18$ and $R_{J/\psi}^{SM} = 0.289 \pm 0.01$.

FPCP 2024

 $\mathbf{5}$

⁵https://hflav-eos.web.cern.ch/hflav-eos/semi/summer23/html/RDsDsstar/RDRDs.html.

 $^{{}^{6}}$ R. Aaij et al. (LHCb Collaboration); Phys. Rev. Lett. 120, 121801 (2018). $\langle \Xi \rangle \langle \Xi \rangle \equiv 0$

▶ Belle measured the longitudinal polarization of $\tau(P_{\tau}^{D^*})^7$ and of $D^*(F_L^{D^*})^8$ in $B \to D^* \tau \overline{\nu}_{\tau}$ decay,

$$P_{\tau}^{D^*} = \frac{\Gamma(\lambda_{\tau} = 1/2) - \Gamma(\lambda_{\tau} = -1/2)}{\Gamma(\lambda_{\tau} = 1/2) + \Gamma(\lambda_{\tau} = -1/2)} = -0.38 \pm 0.51^{+0.21}_{-0.16}$$
$$F_L^{D^*} = \frac{\Gamma_{\lambda_{D^*} = 0}(B \to D^* \tau \overline{\nu}_{\tau})}{\Gamma(B \to D^* \tau \overline{\nu}_{\tau})} = 0.60 \pm 0.08 \pm 0.04$$

and their SM predictions are $P_{\tau}^{D^*} = -0.497 \pm 0.013 \quad , \quad F_L^{D^*} = 0.457 \pm 0.010.$

▶ NP models: W', Leptoquarks.

 Leptoquarks as possible NP candidates to explain flavor anomalies.

C P Haritha

 $⁷_{\rm S.~Hirose}$ et al. (Belle); Phys. Rev. D 97, 012004 (2018).

⁸ A.Abdesselam et al.(Belle),in 10th International Workshop on the CKM Enitarity Triangle(2019).

A. Angelescu et al., "Closing the window on single leptoquark solutions to the $B\mbox{-}physics$ anomalies", JHEP 10 (2018) 183

Model	$R_{K^{(*)}}$	$R_{D^{(*)}}$	$R_{K^{(*)}} \ \& \ R_{D^{(*)}}$
S_1	X *	\checkmark	× *
R_2	X *	\checkmark	×
$\widetilde{R_2}$	×	×	×
S_3	\checkmark	×	×
U_1	\checkmark	\checkmark	\checkmark
U_3	\checkmark	×	×

• Only U_1 can simultaneously accomodate $R_{K^{(*)}}$ and $R_{D^{(*)}}$.

• We examine the impact of the presence of U_1 leptoquark in the $\Lambda_b \to \Lambda_c^*(2595, 2625)\tau^-\bar{\nu}_{\tau}$ decays.

- 31

7

Theoretical Framework for the $\Lambda_b \to \Lambda_c^* \tau \bar{\nu}_{\tau}$ decays

Effective Hamiltonian

The most general effective Hamiltonian for $b\to c\ell\nu_\ell$ transition including NP contributions^9

$$\mathcal{H}_{eff}^{b \to c\ell\nu} = \frac{4G_F V_{cb}}{\sqrt{2}} \Big[O_{V_L} + \sum_i C_i O_i \Big],$$

 $C_i \longrightarrow C_{V_{L,R}}, C_{S_{L,R}}, C_T$ Wilson coefficients.

The fermionic operators are:

$$\begin{array}{lll} \mathcal{O}_{V_L} & = & \left(\bar{c}_L \gamma^{\mu} b_L \right) \left(\bar{\ell}_L \gamma_{\mu} \nu_{\ell_L} \right), & \mathcal{O}_{V_R} = \left(\bar{c}_R \gamma^{\mu} b_R \right) \left(\bar{\ell}_L \gamma_{\mu} \nu_{\ell_L} \right) \\ \mathcal{O}_{S_L} & = & \left(\bar{c}_R b_L \right) \left(\bar{\ell}_R \nu_{\ell_L} \right), & \mathcal{O}_{S_R} = \left(\bar{c}_L b_R \right) \left(\bar{\ell}_R \nu_{\ell_L} \right) \\ \mathcal{O}_T & = & \left(\bar{c}_R \sigma^{\mu\nu} b_L \right) \left(\bar{\ell}_R \sigma_{\mu\nu} \nu_{\ell_L} \right) \end{array}$$

⁹C. Murgui, A. Peñuelas, M. Jung and A. Pich ; JHEP 09, 103 (2019).
⁴ → ⁴ → ⁴ → ⁵ → ⁵

U_1 leptoquark model

• Interaction Lagrangian describing the coupling between U_1 and SM fermions can be described by,

$$\mathcal{L}_{U_1} = h_L^{ij} \bar{Q}_i \gamma_\mu U_1^\mu L_j + h_R^{ij} \bar{d}_{Ri} \gamma_\mu U_1^\mu \ell_{Rj} + h.c.$$

where $h_{L,R}^{ij}$ are 3×3 complex matrices.

• Integrating out the heavy U_1 , the couplings contributing to $b \to c \tau \bar{\nu}_{\tau}$ are,

$$C_{V_L}(\mu_{LQ}) = \frac{1}{2\sqrt{2}G_F V_{cb}} \frac{(V_{CKM}h_L)^{23}(h_L^{33})^*}{M_{U_1}^2}$$

$$C_{S_R}(\mu_{LQ}) = \frac{-1}{\sqrt{2}G_F V_{cb}} \frac{(V_{CKM}h_L)^{23}(h_R^{33})^*}{M_{U_1}^2}$$

9

Hadronic matrix elements :

$$B_1(p_1, M_1) \longrightarrow B_2^{(*)}(p_2, M_2) + \ell(p_\ell, m_\ell) + \nu_\ell(p_\nu, 0)$$

The hadronic matrix elements can be parametrized in terms of various form factors.

$$\begin{split} &\text{For } 1/2^+ \to 1/2^- \text{ transition } (\Lambda_b \to \Lambda_c^*(2595)\tau\bar{\nu}_\tau) \ , \\ &M_\mu^V = \langle B_2, \lambda_2 | \bar{c}\gamma_\mu b | B_1, \lambda_1 \rangle \\ &= \bar{u}_{B_2}(p_2, \lambda_2) \Big[\gamma_\mu F_1^V(q^2) - i\sigma_{\mu\nu} \frac{q_\nu}{M_1} F_2^V(q^2) + \frac{q_\mu}{M_1} F_3^V(q^2) \Big] \gamma_5 u_{B_1}(p_1, \lambda_1) \\ &M_\mu^A = \langle B_2, \lambda_2 | \bar{c}\gamma_\mu \gamma_5 b | B_1, \lambda_1 \rangle \\ &= \bar{u}_{B_2}(p_2, \lambda_2) \Big[\gamma_\mu F_1^A(q^2) - i\sigma_{\mu\nu} \frac{q_\nu}{M_1} F_2^A(q^2) + \frac{q_\mu}{M_1} F_3^A(q^2) \Big] u_{B_1}(p_1, \lambda_1) \\ &q^\mu \longrightarrow \text{four-momentum transfer,} \end{split}$$

 $\lambda_1, \lambda_2 \longrightarrow$ helicities of the parent and daughter baryon, $\sigma_{\mu\nu} = \frac{i}{2} [\gamma_{\mu}, \gamma_{\nu}].$

For $1/2^+ \to 3/2^-$ transition $(\Lambda_b \to \Lambda_c^*(2625)\tau\bar{\nu}_{\tau})$,

$$\begin{split} M^{V}_{\mu} &= \langle B^{*}_{2}, \lambda_{2} | \bar{c} \gamma_{\mu} b | B_{1}, \lambda_{1} \rangle \\ &= \overline{u}_{B^{*}_{2}}(p_{2}, \lambda_{2}) \Big[g_{\alpha\mu} F^{V}_{1}(q^{2}) + \gamma_{\mu} \frac{p_{1\alpha}}{M_{1}} F^{V}_{2}(q^{2}) + \frac{p_{1\alpha} p_{2\mu}}{M_{1}^{2}} F^{V}_{3}(q^{2}) \\ &+ \frac{p_{1\alpha} q_{\mu}}{M_{1}^{2}} F^{V}_{4}(q^{2}) \Big] u_{B_{1}}(p_{1}, \lambda_{1}) \end{split}$$

$$\begin{split} M^{A}_{\mu} &= \langle B^{*}_{2}, \lambda_{2} | \bar{c} \gamma_{\mu} \gamma_{5} b | B_{1}, \lambda_{1} \rangle \\ &= \overline{u}_{B^{*}_{2}}(p_{2}, \lambda_{2}) \Big[g_{\alpha\mu} F^{A}_{1}(q^{2}) + \gamma_{\mu} \frac{p_{1\alpha}}{M_{1}} F^{A}_{2}(q^{2}) + \frac{p_{1\alpha} p_{2\mu}}{M_{1}^{2}} F^{A}_{3}(q^{2}) \\ &+ \frac{p_{1\alpha} q_{\mu}}{M_{1}^{2}} F^{A}_{4}(q^{2}) \Big] \gamma_{5} u_{B_{1}}(p_{1}, \lambda_{1}) \end{split}$$

▶ We use the form factors obtained in the framework of Lattice QCD.^{10,11}

C P Haritha

FPCP 2024

E 990

¹⁰S. Meinel and G. Rendon; Phys. Rev. D 103, 094516 (2021)

Helicity Amplitudes

► The helicity amplitudes are defined as : $H_{\lambda_2,\lambda_W}^{V/A} = M_{\mu}^{V/A}(\lambda_2) \overrightarrow{\epsilon}^{*^{\mu}}(\lambda_W).$

$$\lambda_2 \longrightarrow$$
 helicity of the daughter baryon,
 $\lambda_W \longrightarrow$ helicity of the $W^-_{off-shell}$,
 $\epsilon^{\mu} \longrightarrow$ polarization of the $W^-_{off-shell}$.

For $1/2^+ \to 1/2^-$ transition,

$$\begin{aligned} H_{\frac{1}{2}t}^{V,A} &= (1+C_{V_L}\pm C_{V_R})\sqrt{\frac{Q_{\mp}}{q^2}} \left(F_1^{V,A}(M_1\pm M_2)\mp F_3^{V,A}\frac{q^2}{M_1}\right) \\ H_{\frac{1}{2}0}^{V,A} &= (1+C_{V_L}\pm C_{V_R})\sqrt{\frac{Q_{\pm}}{q^2}} \left(F_1^{V,A}(M_1\mp M_2)\mp F_2^{V,A}\frac{q^2}{M_1}\right) \\ H_{\frac{1}{2}1}^{V,A} &= (1+C_{V_L}\pm C_{V_R})\sqrt{2Q_{\pm}} \left(-F_1^{V,A}\pm F_2^{V,A}\frac{M_1\mp M_2}{M_1}\right) \end{aligned}$$

・ロト・西・・ヨト・ヨー うへの

$$\begin{split} H^{S,P}_{\frac{1}{2}0} &= (C_{S_L} \pm C_{S_R}) \frac{\sqrt{Q_{\mp}}}{m_b \mp m_c} \left[-F_1^{V,A} (M_1 \pm M_2) \pm F_3^{V,A} \frac{q^2}{M_1} \right] \\ \text{where } Q_{\pm} &= (M_1 \pm M_2)^2 - q^2. \end{split}$$

▶ The scalar and pseudoscalar Helicity amplitudes $H_{\frac{1}{2}0}^{S,P}$ are obtained using equations of motion.

For $1/2^+ \rightarrow 3/2^-$ transition,

$$\begin{split} H^{V,A}_{\frac{1}{2}t} &= (1+C_{V_L}\pm C_{V_R})\Big\{\pm \sqrt{\frac{2}{3}\frac{Q_{\mp}}{q^2}}\frac{Q_{\pm}}{2M_1M_2}\Big(F_1^{V,A}M_1\pm F_2^{V,A}(M_1\mp M_2)\\ &+ F_3^{V,A}\frac{(M_1+M_2)(M_1-M_2)-q^2}{2M_1}+F_4^{V,A}\frac{q^2}{M_1}\Big)\Big\}\\ H^{V,A}_{\frac{1}{2}0} &= (1+C_{V_L}\pm C_{V_R})\Big\{\pm \sqrt{\frac{2}{3}\frac{Q_{\pm}}{q^2}}\Big(F_1^{V,A}\frac{(M_1+M_2)(M_1-M_2)-q^2}{2M_2}\\ &\pm F_2^{V,A}\frac{Q_{\mp}(M_1\pm M_2)}{2M_1M_2}+F_3^{V,A}\frac{|\mathbf{p}_2|^2}{M_2}\Big)\Big\} \end{split}$$

- 2

13

・ロト ・部ト ・ヨト ・ヨト

$$\begin{split} H_{\frac{1}{2}1}^{V,A} &= (1+C_{V_L}\pm C_{V_R})\sqrt{\frac{Q_{\pm}}{3}}\left(F_1^{V,A}-F_2^{V,A}\frac{Q_{\mp}}{M_1M_2}\right) \\ H_{\frac{3}{2}1}^{V,A} &= (1+C_{V_L}\pm C_{V_R})\left\{\pm\sqrt{Q_{\pm}}F_1^{V,A}\right\} \\ H_{\frac{1}{2}0}^{S,P} &= (C_{S_L}\pm C_{S_R})\sqrt{\frac{2}{3}}\frac{\sqrt{Q_{\mp}}}{(m_b\mp m_c)}\frac{Q_{\pm}}{2M_2}\left\{F_1^{V,A}\pm F_2^{V,A}\frac{(M_1\mp M_2)}{M_1}\right. \\ &+ F_3^{V,A}\frac{(M_1+M_2)(M_1-M_2)-q^2}{2M_1^2}+F_4^{V,A}\frac{q^2}{M_1^2}\right\} \end{split}$$

▶ The total left-handed helicity amplitude is

$$\begin{aligned} H_{\lambda_2,\lambda_W} &= H^V_{\lambda_2,\lambda_W} - H^A_{\lambda_2,\lambda_W}, \\ H^{SP}_{\lambda_2,0} &= H^S_{\lambda_2,0} - H^P_{\lambda_2,0}. \end{aligned}$$

C P Haritha

FPCP 2024

May 27, 2024 14

æ

・ロト ・日ト ・ヨト ・ヨ

Angular decay distribution

The twofold angular distribution for the $B_1 \to B_2^{(*)} \ell^- \bar{\nu}_\ell$ decay ¹²,

$$\frac{d^2\Gamma}{dq^2d\cos\theta_\ell} = \frac{G_F^2|V_{cb}|^2q^2|\mathbf{p}_2|}{512\pi^3m_{B_1}^2} \left(1 - \frac{m_\ell^2}{q^2}\right)^2 \left[A_1 + \frac{m_\ell^2}{q^2}A_2 + 2A_3 + \frac{4m_\ell}{\sqrt{q^2}}A_4\right],$$

$$\begin{split} A_1 &= 2\sin^2\theta_\ell \Big(H_{\frac{1}{2},0}^2 + H_{-\frac{1}{2},0}^2\Big) + (1 - \cos\theta_\ell)^2 \Big(H_{\frac{1}{2},1}^2 + H_{\frac{3}{2},1}^2\Big) \\ &+ (1 + \cos\theta_\ell)^2 \Big(H_{-\frac{1}{2},-1}^2 + H_{-\frac{3}{2},-1}^2\Big), \\ A_2 &= 2\cos^2\theta_\ell \Big(H_{\frac{1}{2},0}^2 + H_{-\frac{1}{2},0}^2\Big) + \sin^2\theta_\ell \Big(H_{\frac{1}{2},1}^2 + H_{-\frac{1}{2},-1}^2 + H_{\frac{3}{2},1}^2 + H_{-\frac{3}{2},-1}^2\Big) \\ &+ 2\Big(H_{\frac{1}{2},t}^2 + H_{-\frac{1}{2},t}^2\Big) - 4\cos\theta_\ell \Big(H_{\frac{1}{2},t}H_{\frac{1}{2},0} + H_{-\frac{1}{2},t}H_{-\frac{1}{2},0}\Big), \\ A_3 &= \Big(H_{\frac{1}{2},0}^{SP}\Big)^2 + \Big(H_{-\frac{1}{2},0}^{SP}\Big)^2, \\ A_4 &= -\cos\theta_\ell \Big(H_{\frac{1}{2},0}H_{\frac{1}{2},0}^{SP} + H_{-\frac{1}{2},0}H_{-\frac{1}{2},0}^{SP}\Big) + \Big(H_{\frac{1}{2},t}H_{\frac{1}{2},0}^{SP} + H_{-\frac{1}{2},t}H_{-\frac{1}{2},0}^{SP}\Big). \end{split}$$

Differential decay rate

On integrating out $\cos \theta_{\ell}$,

$$\frac{d\Gamma}{dq^2} = \frac{G_F^2 |V_{cb}|^2 q^2 |\mathbf{p}_2|}{192 \pi^3 m_{B_1}^2} \left(1 - \frac{m_l^2}{q^2}\right)^2 H_{\frac{1}{2} \to \frac{1}{2} \left(\frac{3}{2}\right)},$$

where

$$\begin{split} H_{\frac{1}{2} \to \frac{1}{2}} &= \left(H_{\frac{1}{2}0}^{2}\right) + \left(H_{-\frac{1}{2}0}^{2}\right) + \left(H_{\frac{1}{2}1}^{2}\right) + \left(H_{-\frac{1}{2}-1}^{2}\right) + \frac{m_{l}^{2}}{2q^{2}} \left[\left(H_{\frac{1}{2}0}^{2}\right) \\ &+ \left(H_{-\frac{1}{2}0}^{2}\right) + \left(H_{\frac{1}{2}1}^{2}\right) + \left(H_{-\frac{1}{2}-1}^{2}\right) + 3\left(H_{\frac{1}{2}t}^{2} + H_{-\frac{1}{2}t}^{2}\right) \right] \\ &+ \frac{3}{2} \left[\left(H_{\frac{1}{2}0}^{SP}\right)^{2} + \left(H_{-\frac{1}{2}0}^{SP}\right)^{2} \right] + \frac{3m_{l}}{\sqrt{q^{2}}} \left[H_{\frac{1}{2}t}H_{\frac{1}{2}0}^{SP} + H_{-\frac{1}{2}t}H_{-\frac{1}{2}0}^{SP} \right] \\ &H_{\frac{1}{2} \to \frac{3}{2}} = \left(H_{\frac{1}{2}0}^{2}\right) + \left(H_{-\frac{1}{2}0}^{2}\right) + \left(H_{\frac{1}{2}1}^{2}\right) + \left(H_{-\frac{1}{2}-1}^{2}\right) + \left(H_{\frac{3}{2}1}^{2}\right) + \left(H_{-\frac{3}{2}-1}^{2}\right) \\ &+ \frac{m_{l}^{2}}{2q^{2}} \left[\left(H_{\frac{1}{2}0}^{2}\right) + \left(H_{-\frac{1}{2}0}^{2}\right) + \left(H_{\frac{1}{2}1}^{2}\right) + \left(H_{-\frac{1}{2}-1}^{2}\right) + \left(H_{\frac{3}{2}1}^{2}\right) \\ &+ \left(H_{-\frac{3}{2}-1}^{2}\right) + 3\left(H_{\frac{1}{2}t}^{2} + H_{-\frac{1}{2}t}^{2}\right) \right] + \frac{3}{2} \left[\left(H_{\frac{1}{2}0}^{SP}\right)^{2} + \left(H_{-\frac{1}{2}0}^{SP}\right)^{2} \right] \\ &+ \frac{3m_{l}}{\sqrt{q^{2}}} \left[H_{\frac{1}{2}t}H_{\frac{1}{2}0}^{SP} + H_{-\frac{1}{2}t}H_{-\frac{1}{2}0}^{SP} \right] \end{split}$$

C P Haritha

May 27, 2024

 q^2- dependent observables

▶ Differential branching fraction

$$DBR(q^2) = \tau_{B_1} \left(\frac{d\Gamma}{dq^2}\right)$$

Ratio of branching fractions

$$R(q^2) = \frac{\frac{d\Gamma}{dq^2}(B_1 \to B_2^{(*)}\tau \overline{\nu}_{\tau})}{\frac{d\Gamma}{dq^2}(B_1 \to B_2^{(*)}\ell \overline{\nu}_{\ell})}$$

▶ Forward-backward asymmetry of the charged lepton

$$A_{FB}^{\ell}(q^2) = \frac{\left(\int_0^1 - \int_{-1}^0\right) \frac{d^2\Gamma}{dq^2d\cos\theta_\ell} d\cos\theta_\ell}{\left(\int_0^1 + \int_{-1}^0\right) \frac{d^2\Gamma}{dq^2d\cos\theta_\ell} d\cos\theta_\ell},$$

C P Haritha

3

17

Image: A match the state of the state of

► Convexity parameter

$$C_F^\tau(q^2) = \frac{1}{d\Gamma/dq^2} \frac{d^2}{d(\cos\theta_\ell)^2} \left(\frac{d^2\Gamma}{dq^2d\cos\theta_\ell}\right),$$

Longitudinal polarization of the charged lepton

$$P_L^{\tau}(q^2) = \frac{d\Gamma^{\lambda_{\tau}=1/2}/dq^2 - d\Gamma^{\lambda_{\tau}=-1/2}/dq^2}{d\Gamma^{\lambda_{\tau}=1/2}/dq^2 + d\Gamma^{\lambda_{\tau}=-1/2}/dq^2}$$

C P Haritha

FPCP 2024

May 27, 2024 18

3

・ロト ・回ト ・ヨト ・ヨ

Constraints on New Couplings $(h_L^{23}, h_L^{33}, h_R^{33})$

 \triangleright U_1 LQ couplings,

$$\begin{array}{lcl} C_{V_L} & \propto & h_L^{23} {(h_L^{33})}^* \\ C_{S_R} & \propto & h_L^{23} {(h_R^{33})}^* \end{array}$$

- ▶ NP couplings are assumed to be real.
- ► The new couplings are constrained using experimental measurements of $R_{D^{(*)}}, R_{J/\psi}, F_L^{D^*}, P_{\tau}^{D^*}$ and $\mathcal{B}(B_c^+ \to \tau^+ \nu_{\tau})$.
- χ^2 fitting is performed to obtain the best-fit values.

$$\chi^{2}(C_{k}) = \sum_{ij}^{N_{obs}} [O_{i}^{exp} - O_{i}^{th}(C_{k})]V_{ij}^{-1}[O_{j}^{exp} - O_{j}^{th}(C_{k})]$$

 $\begin{array}{ccc} O_i^{exp} & \longrightarrow \mbox{experimental values of the observables} \\ O_i^{th} & \longrightarrow \mbox{theoretical predictions} \\ V & \longrightarrow \mbox{covariance matrix considering the correlation of } R_D \\ & \mbox{and } R_{D^*} \end{array}$

Experimental and SM theoretical values of the observables

Observable	Experimental value	SM value
R_D	0.357 ± 0.029	0.298 ± 0.004
R_{D^*}	0.284 ± 0.012	0.254 ± 0.005
$R_{J/\psi}$	$0.71 \pm 0.17 \pm 0.18$	0.289 ± 0.01
$F_L^{\dot{D}^*}$	$0.60 \pm 0.08 \pm 0.04$	0.457 ± 0.010
$P_{ au}^{D^*}$	$-0.38 \pm 0.51^{+0.21}_{-0.16}$	-0.497 ± 0.013

• The experimental upper limit on $\mathcal{B}(B_c^+ \to \tau^+ \nu_{\tau})$ is¹³

$$\mathcal{B}(B_c^+ \to \tau^+ \nu_\tau) \lesssim 30\%$$

¹³ R. Alonso, B. Grinstein, and J. Martin Camalich; Phys. Rev. Lett. 418, 381802 (2017) = • = • • • • • • •

- ▶ The LQ mass has been directly constrained as $M_{LQ} \gtrsim 1.5$ TeV from the LQ pair production searches ^{14,15}.
- We take $M_{LQ} = 2$ TeV.

Figure 1: The allowed parameter space for the Leptoquark couplings.

	Best-fit value	$\chi^2_{ m min}$
SM	$C_i = 0$	22.593
U_1	$(h_L^{23}(h_L^{33})^*, h_L^{23}(h_R^{33})^*) = (0.292, -0.125)$	4.822

 14 ATLAS, G. Aad et al.; J. High Energy Phys. 06, 188 (2023).

 15 CMS, A. Hayrapetyan et al., (2023), arXiv:2308.07826 [hep-ex] < \square > $\langle \square$ >

C P Haritha

Predictions for various q^2 - dependent observables in

> $\Lambda_b \to \Lambda_c^*(2595)\tau^-\bar{\nu}_\tau$ Decay ($1/2^+ \to 1/2^-$)

- 34

イロト イヨト イヨト イ

Figure 2: q^2 – dependence of $DBR(q^2)$, $R_{\Lambda_c^*}(q^2)$ and $A_{FB}^{\tau}(q^2)$ in SM and in U_1 LQ scenario for $\Lambda_b \rightarrow \Lambda_c^*(2595)\tau^- \bar{\nu}\tau$ decay.

FPCP 2024

May 27, 2024 23

æ

イロト イヨト イヨト イヨト

Figure 3: q^2 – dependence of $C_F^{\tau}(q^2)$ and $P_L^{\tau}(q^2)$ in SM and in U_1 LQ scenario for $\Lambda_b \to \Lambda_c^{\star}(2595)\tau^-\bar{\nu}_{\tau}$ decay.

FPCP 2024

May 27, 2024

æ

< ≣⇒

・ロト ・日ト ・日ト

Predictions for various q^2 - dependent observables in

> $\Lambda_b \to \Lambda_c^*(2625)\tau^-\bar{\nu}_\tau$ Decay ($1/2^+ \to 3/2^-$)

- 31

イロト イヨト イヨト イ

Figure 4: q^2 – dependence of $DBR(q^2)$, $R_{\Lambda_c^*}(q^2)$ and $A_{FB}^{\tau}(q^2)$ in SM and in U_1 LQ scenario for $\Lambda_b \rightarrow \Lambda_c^*(2625)\tau^-\bar{\nu}_{\tau}$ decay.

May 27, 2024

æ

26

・ロト ・西ト ・ヨト ・ヨト

Figure 5: q^2- dependence of $C_F^\tau(q^2)$ and $P_L^\tau(q^2)$ in SM and in U_1 LQ scenario for $\Lambda_b \to \Lambda_c^*(2625) \tau^- \bar{\nu}_{\tau}$ decay.

FPCP 2024

≣⇒ May 27, 2024

æ

・ロト ・日ト ・ヨト

Summary

- $\Lambda_b \to \Lambda_c^* \tau \bar{\nu}_{\tau}$ decay modes are analyzed within the SM and in U_1 leptoquark scenario.
- ▶ The best-fit values of the NP couplings are obtained using a χ^2 analysis.
- ▶ Predictions for various q^2 dependent observables such as $DBR(q^2)$, $R_{\Lambda_c^*}(q^2)$, $A_{FB}^{\tau}(q^2)$, $C_F^{\tau}(q^2)$, and $P_L^{\tau}(q^2)$ are presented in the SM and in U_1 LQ model.
- ► The observables are sensitive to U_1 LQ effects. Deviations from the SM prediction is more pronounced in $R_{\Lambda_c^*}(q^2)$ and $P_L^{\tau}(q^2)$ in both the decay modes.
- ▶ The LFU ratio $R_{\Lambda_c^*}(q^2)$ displays a prominent deviation from the SM in the higher q^2 region. Measurement of this observable can further substantiate the observed anomalies in b- decays.
- ► The b-baryon decay modes mediated by b → clν_l can act as complementary decay channels to b-meson decays with regards to NP.
- Search for physics beyond SM will be enriched by studies of such modes also.

E SQA

28

・ コ ト ・ 四 ト ・ 日 ト ・ 日 ト

Thank You

0	D	тт		4.3	
U.	P	- Ha	ari	τ.	\mathbf{na}

æ

29

・ロト ・日下・ ・ ヨト・

Back up

æ

< ≣⇒

・ロト ・日下・ ・日下

Form Factors

The matrix elements when parametrized in terms of form factors from lattice QCD 16 :

For $1/2^+ \rightarrow 1/2^-$ transition, $\langle B_2 | V^{\mu} | B_1 \rangle = \overline{u}_{B_2}(p_2, s_2) \Big[f_0^{(\frac{1}{2})}(M_1 + M_2) \frac{q^{\mu}}{r^2} \Big]$ + $f_{+}^{(\frac{1}{2}^{-})} \frac{M_1 - M_2}{c} \left(p_1^{\mu} + p_2^{\mu} - (M_1^2 - M_2^2) \frac{q^{\mu}}{c^2} \right)$ + $f_{\perp}^{(\frac{1}{2}^{-})}\left(\gamma^{\mu}+\frac{2M_{2}}{s}p_{1}^{\mu}-\frac{2M_{1}}{s}p_{2}^{\mu}\right)\right]\gamma_{5}u_{B_{1}}(p_{1},s_{1})$ $\langle B_2 | A^{\mu} | B_1 \rangle = \overline{u}_{B_2}(p_2, s_2) \Big[-g_0^{(\frac{1}{2})}(M_1 - M_2) \frac{q^{\mu}}{q^2} \Big]$ $- g_{+}^{(\frac{1}{2}^{-})} \frac{M_{1} + M_{2}}{2} \left(p_{1}^{\mu} + p_{2}^{\mu} - (M_{1}^{2} - M_{2}^{2}) \frac{q^{\mu}}{q^{2}} \right)$ $- f_{\perp}^{(\frac{1}{2}^{-})} \left(\gamma^{\mu} - \frac{2M_2}{2} p_1^{\mu} - \frac{2M_1}{2} p_2^{\mu} \right) \Big] u_{B_1}(p_1, s_1)$

where $s_{\pm} = (M_1 \pm M_2)^2 - q^2$.

$$\begin{aligned} & \text{For } 1/2^+ \to 3/2^- \text{ transition,} \\ & \langle B_2^* | V^\mu | B_1 \rangle &= \overline{u}_{B_2^*}(p_2, s_2) \Big[f_0^{(\frac{3}{2}^-)} \frac{M_2}{s_+} \frac{(M_1 - M_2)p^\lambda q^\mu}{q^2} \\ & + f_+^{(\frac{3}{2}^-)} \frac{M_2}{s_-} \frac{(M_1 + M_2)p^\lambda (q^2(p_1^\mu + p_2^\mu) - (M_1^2 - M_2^2)q^\mu)}{q^2 s_+} \\ & + f_{\perp}^{(\frac{3}{2}^-)} \frac{M_2}{s_-} \left(p^\lambda \gamma^\mu - \frac{2p^\lambda (M_1 p_2^\mu + M_2 p_1^\mu)}{s_+} \right) \\ & + f_{\perp'}^{(\frac{3}{2}^-)} \frac{M_2}{s_-} \left(p^\lambda \gamma^\mu - \frac{2p^\lambda p_2^\mu}{M_2} + \frac{2p^\lambda (M_1 p_2^\mu + M_2 p_1^\mu)}{s_+} + \frac{s_- g^{\lambda\mu}}{M_2} \right) \Big] \\ & \times u_{B_1}(p_1, s_1) \end{aligned}$$

FPCP 2024

May 27, 2024 32

◆□ ▶ ◆酉 ▶ ◆臣 ▶ ◆臣 ▶ ○ ● ● ● ● ●

$$\begin{split} \langle B_2^* | A^\mu | B_1 \rangle &= \overline{u}_{B_2^*}(p_2, s_2) \Big[-g_0^{\left(\frac{3}{2}^{-}\right)} \frac{M_2}{s_-} \frac{(M_1 + M_2) p^\lambda q^\mu}{q^2} \\ &- g_+^{\left(\frac{3}{2}^{-}\right)} \frac{M_2}{s_+} \frac{(M_1 - M_2) p^\lambda (q^2 (p_1^\mu + p_2^\mu) - (M_1^2 - M_2^2) q^\mu)}{q^2 s_-} \\ &- g_\perp^{\left(\frac{3}{2}^{-}\right)} \frac{M_2}{s_+} \left(p^\lambda \gamma^\mu - \frac{2 p^\lambda (M_1 p_2^\mu - M_2 p_1^\mu)}{s_-} \right) \\ &- g_{\perp'}^{\left(\frac{3}{2}^{-}\right)} \frac{M_2}{s_+} \left(p^\lambda \gamma^\mu + \frac{2 p^\lambda p_2^\mu}{M_2} + \frac{2 p^\lambda (M_1 p_2^\mu - M_2 p_1^\mu)}{s_-} - \frac{s_+ g^{\lambda\mu}}{M_2} \right) \Big] \\ &\times \gamma_5 u_{B_1}(p_1, s_1) \end{split}$$

・ロト・日本・ 小田・ 山田・ 小田・

The two sets of form factors are related as follows.

$$\begin{split} F_1^{V(\frac{1}{2}^-)} &= \sigma_G^{(\frac{1}{2}^-)} \frac{(M_1 - M_2)^2 (f_{\perp}^{(\frac{1}{2}^-)} - f_{+}^{(\frac{1}{2}^-)})}{s_{-}} - f_{\perp}^{(\frac{1}{2}^-)}, \\ F_2^{V(\frac{1}{2}^-)} &= \sigma_G^{(\frac{1}{2}^-)} \frac{M_1 (M_1 - M_2) (f_{\perp}^{(\frac{1}{2}^-)} - f_{+}^{(\frac{1}{2}^-)})}{s_{-}}, \\ F_3^{V(\frac{1}{2}^-)} &= \sigma_G^{(\frac{1}{2}^-)} \frac{M_1 (M_1 + M_2) (s_{-} f_{0}^{(\frac{1}{2}^-)} + q^2 f_{\perp}^{(\frac{1}{2}^-)} - (M_1 - M_2)^2 f_{+}^{(\frac{1}{2}^-)})}{q^2 s_{-}}, \\ F_1^{A(\frac{1}{2}^-)} &= \sigma_G^{(\frac{1}{2}^-)} \frac{(M_1 + M_2)^2 (g_{\perp}^{(\frac{1}{2}^-)} - g_{+}^{(\frac{1}{2}^-)})}{s_{+}} - g_{\perp}^{(\frac{1}{2}^-)}, \\ F_2^{A(\frac{1}{2}^-)} &= -\sigma_G^{(\frac{1}{2}^-)} \frac{M_1 (M_1 + M_2) (g_{\perp}^{(\frac{1}{2}^-)} - g_{\perp}^{(\frac{1}{2}^-)})}{s_{+}}, \\ F_3^{A(\frac{1}{2}^-)} &= \sigma_G^{(\frac{1}{2}^-)} \frac{M_1 (M_1 - M_2) (-s_{+} g_{0}^{(\frac{1}{2}^-)} - q^2 g_{\perp}^{(\frac{1}{2}^-)} + (M_1 + M_2)^2 g_{+}^{(\frac{1}{2}^-)})}{q^2 s_{+}}, \end{split}$$

C P Haritha

May 27, 2024 34

E 990

・ロト ・ 日 ト ・ ヨ ト ・ ヨ ト

$$\begin{split} F_{1}^{V(\frac{3}{2}^{-})} &= \sigma_{G}^{(\frac{3}{2}^{-})} f_{\perp}^{(\frac{3}{2}^{-})}, \\ F_{2}^{V(\frac{3}{2}^{-})} &= \sigma_{G}^{(\frac{3}{2}^{-})} \frac{M_{1}M_{2}}{s_{-}} [f_{\perp}^{(\frac{3}{2}^{-})} + f_{\perp}^{(\frac{3}{2}^{-})}], \\ F_{3}^{V(\frac{3}{2}^{-})} &= \sigma_{G}^{(\frac{3}{2}^{-})} \frac{2M_{1}^{2}}{s_{-}s_{+}} [-M_{2}(M_{1} + M_{2})f_{\perp}^{(\frac{3}{2}^{-})} + M_{2}(M_{1} + M_{2})(f_{\perp}^{(\frac{3}{2}^{-})} + f_{+}^{(\frac{3}{2}^{-})}) \\ &- s_{+}f_{\perp}^{(\frac{3}{2}^{-})}], \\ F_{4}^{V(\frac{3}{2}^{-})} &= \sigma_{G}^{(\frac{3}{2}^{-})} \frac{M_{1}^{2}M_{2}}{q^{2}s_{+}s_{-}} [(M_{1} - M_{2})s_{-}f_{0}^{(\frac{3}{2}^{-})} - 2M_{2}q^{2}(f_{\perp}^{(\frac{3}{2}^{-})} - f_{\perp}^{(\frac{3}{2}^{-})}) \\ &- (M_{1} + M_{2})(M_{1}^{2} - M_{2}^{2} - q^{2})f_{+}^{(\frac{3}{2}^{-})}] \\ F_{1}^{A(\frac{3}{2}^{-})} &= \sigma_{G}^{(\frac{3}{2}^{-})}g_{\perp}^{(\frac{3}{2}^{-})}, \\ F_{2}^{A(\frac{3}{2}^{-})} &= \sigma_{G}^{(\frac{3}{2}^{-})}g_{\perp}^{(\frac{3}{2}^{-})} + g_{\perp}^{(\frac{3}{2}^{-})}], \\ F_{3}^{A(\frac{3}{2}^{-})} &= \sigma_{G}^{(\frac{3}{2}^{-})}\frac{2M_{1}^{2}}{s_{-}s_{+}}[M_{2}(M_{1} - M_{2})(g_{\perp}^{(\frac{3}{2}^{-})} - g_{\perp}^{(\frac{3}{2}^{-})} - s_{-}g_{\perp}^{(\frac{3}{2}^{-})}], \\ F_{4}^{A(\frac{3}{2}^{-})} &= \sigma_{G}^{(\frac{3}{2}^{-})}\frac{M_{1}^{2}M_{2}}{q^{2}s_{+}s_{-}}[-(M_{1} + M_{2})s_{+}g_{0}^{(\frac{3}{2}^{-})} - 2M_{2}q^{2}(g_{\perp}^{(\frac{3}{2}^{-})} - g_{\perp}^{(\frac{3}{2}^{-})}) \\ &+ (M_{1} - M_{2})(M_{1}^{2} - M_{2}^{2} - q^{2})g_{+}^{(\frac{3}{2}^{-})}] \end{split}$$

C P Haritha

May 27, 2024

Form factor parametrization

The lattice results for the form factors are extrapolated to the continuum limit and the physical pion mass using the model

$$f(q^2) = F^f \left[1 + C^f \frac{m_\pi^2 - m_{\pi,phys}^2}{(4\pi f_\pi)^2} + D^f a^2 \Lambda^2 \right] + A^f \left[1 + \tilde{C}^f \frac{m_\pi^2 - m_{\pi,phys}^2}{(4\pi f_\pi)^2} + \tilde{D}^f a^2 \Lambda^2 \right] (\omega - 1)$$

with fit parameters $F^f, A^f, C^f, D^f, \tilde{C}^f, \tilde{D}^f$ for each form factor f, and using the kinematic variable,

$$w(q^2) = v.v' = \frac{M_1^2 + M_2^2 - q^2}{2M_1M_2}$$

In the physical limit $m_{\pi} = m_{\pi,phys}, a = 0$, the functions reduce to

$$f(q^2) = F^f + A^f(\omega - 1).$$

The parameters describing the $\Lambda_b \to \Lambda_c^*(2595)$ and $\Lambda_b \to \Lambda_c^*(2625)$ form factors at the physical pion mass and in the continuum limit are given in Table 1.

(日) (周) (王) (王)

f	F^{f}	A^{f}
$f_0^{(\frac{1}{2}^-)}$	0.545(64)	-2.21(66)
$f_{+}^{(\frac{1}{2}^{-})}$	0.1628(90)	1.16(31)
$f_{\perp}^{(\frac{1}{2})}$	0.1690(79)	0.57(25)
$g_{0}^{(\frac{1}{2})}$	0.221(11)	0.94(33)
$g_{+}^{(\frac{1}{2})}$	0.582(64)	-2.24(65)
$g_{\perp}^{(\frac{1}{2})}$	1.22(16)	-6.1(1.9)
$f_0^{(\frac{3}{2})}$	4.29(67)	-27.3(8.7)
$f_{+2}^{(\frac{3}{2})}$	0.0498(70)	1.28(27)
$f_{\perp}^{\left(\frac{3}{2}\right)}$	-0.073(14)	2.52(35)
$f^{\left(\frac{3}{2}\right)}_{\perp}$	0.0687(40)	-0.280(89)
$g_{0}^{(\frac{3}{2}^{-})}$	0.0027(35)	1.23(21)
$g_{+}^{(\frac{3}{2}^{-})}$	3.46(58)	-24.7(8.1)
$g_{\perp}^{(\frac{3}{2}^{-})}$	3.47(57)	-22.6(7.8)
$g^{\left(\frac{3}{2}^{-}\right)}_{\mu\prime}$	-0.062(38)	0.62(57)

Table 1: Form factor $Parameters^{17}$

C P Haritha

FPCP 2024

May 27, 2024 37

- ▶ LQs are coloured bosons which couple to both quarks and leptons.
- ► The LQ interactions are invariant under $SU(3)_C \times SU(2)_L \times U(1)_Y$.
- ▶ They have well-defined fermion number F = 3B + L where B and L are baryon and lepton numbers, respectively.

All LQs are classified by:

- Fermion number |F| = 0, 2
- ▶ Spin 0 (scalar) or Spin 1 (vector)
- ► Electric charge, $Q = I_3 + Y$, |Q| = 1/3, 2/3, 4/3, 5/3

- 3-

イロト イボト イヨト イヨト

LQ states naturally emerge in various extensions of the SM, such as,

- \blacktriangleright SU(5) GUT model
- ▶ Pati-Salam color SU(4)
- ▶ Composite models
- ▶ Technicolor models

Experimental evidence searched:

- Direct : Production cross sections at colliders
- ▶ Indirect : LQ-induced four-fermion interactions

• • • • • • • • • • • •

List of scalar and vector leptoquarks

LQ Symbol	(SU(3), SU(2), U(1))	Spin	F = 3B + L
S_1	$(\bar{3}, 1, 1/3)$	0	-2
$ ilde{S}_1$	$(ar{f 3},{f 1},4/3)$	0	-2
S_3	$(ar{3},3,1/3)$	0	-2
V_2	$(ar{3}, 2, 5/6)$	1	-2
\tilde{V}_2	$(\bar{3}, 2, -1/6)$	1	-2
R_2	$(ar{f 3}, {f 2}, 7/6)$	0	0
$ ilde{R}_2$	$(\bar{\bf 3},{f 2},1/6)$	0	0
U_1	$(\bar{\bf 3},{f 1},2/3)$	1	0
\tilde{U}_1	$(\bar{\bf 3},{f 1},5/3)$	1	0
U_3	$(\bar{\bf 3},{f 3},2/3)$	1	0

.

40

イロト イヨト イヨト イヨト

Helicity Amplitude

FPCP 2024

May 27, 2024 41

三 のへの

・ロト ・ 日 ト ・ ヨ ト ・ ヨ ト

Theoretical predictions for observables

The differential decay rate of $\bar{B} \to D \tau^- \bar{\nu}_{\tau}$ is given by ¹⁸, $\frac{d\Gamma(\bar{B} \to D\tau^- \bar{\nu}_\tau)}{da^2} = \frac{G_F^2 |V_{cb}|^2}{192\pi^3 m_{\odot}^3} q^2 \sqrt{\lambda_D(q^2)} \left(1 - \frac{m_\tau^2}{a^2}\right)^2$ $\times \left\{ |1 + C_{V_L} + C_{V_R}|^2 \left[\left(1 + \frac{m_{\tau}^2}{2q^2} \right) \right] \right\}$ $\left. \times H_{V,0}^2 + \frac{3}{2} \frac{m_\tau^2}{q^2} H_{V,t}^2 \right] + \frac{3}{2} |C_{S_R} + C_{S_L}|^2 H_S^2$ $+3Re\Big[\big(1+C_{V_{L}}+C_{V_{R}}\big)\big(C_{S_{R}}^{*}+C_{S_{L}}^{*}\big)\Big]\frac{m_{\tau}}{\sqrt{a^{2}}}H_{S}H_{V,t}\Big\},$ where $\lambda_D(q^2) = [(m_B - m_D)^2 - q^2][(m_B + m_D)^2 - q^2].$

The amplitudes depend upon HQET form factors, and in this work, we adopt the Caprini *et al.* parametrization for these form factors ¹⁹. The parameters of the $\bar{B} \rightarrow D$ HQET form factors are extracted from lattice QCD calculations ²⁰.

C P Haritha

¹⁸Y. Sakaki, M. Tanaka, A. Tayduganov, R. Watanabe; Phys. Rev. D 88, 094012 (2013).

 $^{^{19}}$ I. Caprini, L. Lellouch, M. Neubert; Nucl. Phys. B 530 (1998).

²⁰M. Okamoto, et al.; Nucl. Phys. B, Proc. Suppl. 140 (2005). $\langle \Box \rangle \langle \overline{\Box} \rangle \langle \overline{\Box} \rangle \langle \overline{\Xi} \rangle \langle \overline{\Xi} \rangle \langle \overline{\Xi} \rangle \langle \overline{\Xi} \rangle$

The differential decay rate of $\bar{B} \to D^* \tau^- \bar{\nu}_\tau \ (B_c \to J/\psi \tau^- \bar{\nu}_\tau)$ is given by ^{21,22},

$$\begin{split} \frac{d\Gamma(\bar{B}(B_c) \to D^*(J/\psi)\tau^-\bar{\nu}_{\tau})}{dq^2} &= \frac{G_F^2|V_{cb}|^2}{192\pi^3m_{B(B_c)}^3}q^2\sqrt{\lambda_{D^*(J/\psi)}(q^2)}\left(1-\frac{m_{\tau}^2}{q^2}\right)^2 \\ &\times \Big\{(|1+C_{V_L}|^2+|C_{V_R}|^2)\bigg[\left(1+\frac{m_{\tau}^2}{2q^2}\right) \\ &\times \left(H_{V,0}^2+H_{V,+}^2+H_{V,-}^2\right)+\frac{3}{2}\frac{m_{\tau}^2}{q^2}H_{V,t}^2\bigg] \\ &-2Re\left[\left(1+C_{V_L}\right)C_{V_R}^*\right] \\ &\times \bigg[\left(1+\frac{m_{\tau}^2}{2q^2}\right)\left(H_{V,0}^2+2H_{V,+}H_{V,-}\right) \\ &+\frac{3}{2}\frac{m_{\tau}^2}{q^2}H_{V,t}^2\bigg]+\frac{3}{2}|C_{S_R}-C_{S_L}|^2H_S^2 \\ &+3Re\bigg[\left(1+C_{V_L}-C_{V_R}\right)\left(C_{S_R}^* \\ &-C_{S_L}^*\right)\bigg]\frac{m_{\tau}}{\sqrt{q^2}}H_SH_{V,t}\bigg\}, \end{split}$$

²¹Y. Sakaki, M. Tanaka, A. Tayduganov, R. Watanabe; Phys. Rev. D 88, 094012 (2013). 22 R. Watanabe; Phys. Lett. B 776, 5 (2018). • • • • • • • • • • • •

C P Haritha

FPCP 2024

-May 27, 2024

The fitted parameters for $\bar{B} \to D^*$ HQET form factors are obtained from HFLAV ²³. The form factors for $B_c \to J/\psi \tau^- \bar{\nu}_{\tau}$ are obtained using perturbative QCD²⁴.

The longitudinal polarization of τ $(P_{\tau}^{D^*})$ and of $D^*(F_L^{D^*})$ in $B \to D^* \tau^- \bar{\nu}_{\tau}$ are respectively given by,

$$\begin{split} P_{\tau}^{D^*} &= \frac{\Gamma(\lambda_{\tau}=1/2) - \Gamma(\lambda_{\tau}=-1/2)}{\Gamma(\lambda_{\tau}=1/2) + \Gamma(\lambda_{\tau}=-1/2)}, \\ F_{L}^{D^*} &= \frac{\Gamma_{\lambda_{D^*}=0}(B \to D^*\tau^-\bar{\nu}_{\tau})}{\Gamma(B \to D^*\tau^-\bar{\nu}_{\tau})}, \end{split}$$

where λ_{τ} and λ_{D^*} denote the helicity of τ and D^* , respectively.

 $^{^{23}}$ Y.S. Amhis, et al.; Phys. Rev. D 107(5) (2023) 052008.

²⁴W.-F. Wang, Y.-Y. Fan, Z.-J. Xiao; Chin. Phys. C 37 (2013) 093102 ()

The branching fraction of $B_c^+ \to \tau^+ \nu_{\tau}$ is given by,

$$\mathcal{B}(B_c^+ \to \tau^+ \nu_{\tau}) = \frac{G_F^2 |V_{cb}|^2 m_{\tau}^2}{8\pi} \tau_{B_c} m_{B_c} f_{B_c}^2 \left(1 - \frac{m_{\tau}^2}{m_{B_c}^2}\right)^2 \times \left| (1 + C_{V_L} - C_{V_R}) + \frac{m_{B_c}^2}{m_{\tau}(m_b + m_c)} (C_{S_R} - C_{S_L}) \right|^2.$$

where $f_{B_c} = 489 \pm 4 \pm 3$ MeV. ²⁵