Region of interest (ROI) filter optimization for the DUNE data acquisition system

Matthew Man, On behalf of the DUNE Collaboration

<u>matthew.man@utoronto.ca</u> May 28th, 2024

FPCP 2024

DUNE

Broad program of physics:

- precision neutrino oscillation measurements
- MeV-scale neutrino physics
- searches beyond the Standard Model

Far Detector – Liquid Argon Time Projection Chamber (LArTPC) at SURF.

- Horizontal drift (HD) technology
- Vertical drift (VD) technology

ProtoDUNE – prototypes of 2 far detector (FD) modules, at CERN

High-intensity neutrino beam, and near detector complex at Fermilab.

TORONTO

Motivation – data selection constraints

Untriggered, the FD HD module has a data volume of ≈1.4 TB/s (FD VD ≈1.8 TB/s).

DUNE's storage limit is ≈30 PB/year for all FD modules.

So DAQ is responsible for data reduction on the order 10⁴.

This is why we need the trigger.

Triggering on beam events in not a problem (through external beam window trigger).

The challenge is capturing a wide range of physics, including interesting low energy physics, without being swamped by backgrounds.

 Solar boron 8 neutrinos are important part of DUNE's low energy program, but argon-39 for example has a similar signature, and so acts as a background

Goal

- DUNE low energy physics program specifies threshold of 5 MeV
- DAQ specification for low energy trigger threshold >10 MeV
 - Lower is possible at reduced efficiency
- Activity below ~10 MeV dominated by background, by orders of magnitude
- Region-of-interest readout
 - Applies on raw detector signal
 - This study considers **solar boron 8 neutrinos**
 - ROI attempts to reduce data bandwidth to allow more low energy physics to be kept

The data acquisition (DAQ) system

For more details see DAQ talk: https://indico.cern.ch/event/1291023/contributions/5866459/

Data Filter

The Data Filter has several possible roles:

- Additional reduction (beyond Trigger) of data volume to disk to fit within DUNE's 30 PB/year storage allocation.
- Removal of instrumentally generated "garbage" events (eg. high-voltage 'streamers').
- ROI filtering to optimizing DAQ for low energy physics such as Supernova & Boron 8 neutrinos.
- Filtering of event classes used for calibration monitoring (e.g. 39 Ar events) after some processing is done.
- Other high-level processing tasks that can help filter the data.

LArTPC

https://iopscience.iop.org/article/10.1088/1748-0221/15/12/P12004

TORONTO

ROI details

Eg. blue waveform, threshold=100 ADC counts (above baseline), triggers ROI

Single channel level ADC waveform thresholding

The ROI algorithm is threshold based. When a channel goes above an ADC peak threshold, ROI is applied

Outside the ROI is zero suppressed

Tunable parameters are the **threshold**, and neighboring **channel width**

- Neighboring channels stored, width of 10 channels on each side
 - Effective induction range for a point charge
- ROI time window is **nominal drift length time ~3 ms**
 - Reducing time window any further affects reconstruction performance

ROI visualization

Eg. blue waveform, threshold=100 ADC counts (above baseline), triggers ROI

Single channel level ADC waveform thresholding

Event window level ROI

- zoomed in for emphasis
- zero suppress outside ROI

UNIVERSITY OF TORONTO

1 tick = 500 ns

From theory to practice

Simulations

- The ROI is run in simulation to analyze performance
- 10,000 **boron 8** neutrino interactions + radiological backgrounds
 - Due to processing memory limitations, only ~1000 interactions are analyzed
 - See backup slide for list of backgrounds included
- Simulation workflow:
 - Geometry simulated is 12% of the FD HD module

ROI analysis

The ROI is applied in simulation to calculate various performance metrics:

- Energy fraction captured within ROI
- Data reduction rate estimate (as fraction of channels within ROI)
- Sensitivity to signal

Plot shows boron 8 signal on collection plane:

- Ratio=0 means the tracks are fully outside ROI
- Ratio=1 means the tracks are fully inside ROI
- This study is performed varying the peak threshold ADC values [50, 100, 150, 200]
 - Threshold 100 corresponds to 1 MeV energy

ROI performance

ROI inclusion ratio plots, varying threshold from left to right [50, 100, 150, 200]

Threshold	Data reduction rate
50	50%
100	80%
150	88%
200	95%

Future studies

The goal is to show the energy distribution of B8 interactions and backgrounds using the ROI.

If more background is removed than signal, then ROI can increase boron 8 sensitivity while reducing data rate.

These plots are too recent and so have not been approved to be shown yet... sorry

Summary

- DUNE represents a significant scientific endeavor with the potential for groundbreaking discoveries.
- The TDAQ system is being optimized for low energy physics (~1-10 MeV) such as boron 8 neutrinos.
- Analysis ongoing to determine optimal solar boron 8 sensitivity, data reduction rate, and possible cuts that could improve performance.
- Using the ROI with a **100 ADC threshold** we can achieve an **80% data reduction rate.**

END

Thanks for your time!!!

<u>References</u>

• FDR

https://edms.cern.ch/ui/#!master/navigator/document?D:101190518:101190518: subDocs

- Trigger and Data AcQuisition Overview <u>https://indico.fnal.gov/event/57752/contributions/260312/</u>
- The readout system of the DUNE experiment: <u>https://indico.phy.ornl.gov/event/112/contributions/561/</u>
- The DAQ for the single-phase DUNE Prototype at CERN: <u>https://indico.cern.ch/event/543031/contributions/2921456/</u>
- Kubernetes for DUNE DAQ https://indico.jlab.org/event/459/contributions/11389/

ProtoDUNE HD filled and being purified!

Backup slides

DEEP UNDERGROUND NEUTRINO EXPERIMENT

- Next-generation neutrino experiment hosted in the United States.
- High-intensity neutrino beam, near detector complex at Fermilab.
- Underground Liquid Argon Time Projection Chamber (LArTPC) far detectors at SURF.
- Broad program of physics: precision neutrino oscillation measurements, MeV-scale neutrino physics, searches beyond the Standard Model.

ProtoDUNE

Prototypes of 2 DUNE far detector (FD) modules, located at CERN

Two LArTPC designs:

- Horizontal drift (HD) technology
- Vertical drift (VD) technology
- ProtoDUNE Horizontal drift is an 800t active mass TPC, making it the largest LArTPC constructed.
- ProtoDUNE successfully operated in 2018 and is preparing for its second run now

Figure: CERN. SPS BA. LHC P.A.2 ALICH SPS B LHC P.A.1 ATLAS

HD

Solar B8 spectrum

- We expect a solar neutrino event rate of ~100 per day in a 40kt LArTPC
- So our sample of 10000 events represents 100 days

ADC charge calibration

A known charge is injected, controlled by a DAC, and the ADC response measured.

Gain is calculated from ADC integral vs. pulser DAC setting.

For a typical collection plane as shown, gain here is g = (21.4 ke)/(909.4 (ADC count)xtick)

= 23.5 e/((ADC count)xtick)

Radiological backgrounds

The radiological background sources considered for the FD HD module. Work is ongoing in developing the background model.

In liquid argon:

- Ar-39
- Ar-42
- Kr-85
- Rn-220 & Rn-222 chain
- K-42

External:

- External gammas
- External neutrons

From detector elements:

- Th-232 chain
- U-238 chain
- Rn-220 & Rn-222 chain
- K-40
- Co-60
- Pb-212

Simulations – detailed

- 2DROIAna package in duneana fork here:
 - https://github.com/matthew-man-457/duneana/tree/mman/2D_ROI
- Simulation workflow (dune10kt_1x2x6):
 - MARLEY gen using solar boron 8 flux + latest decay0 backgrounds
 - Standard G4
 - Detsim uses notpcsigproc (outputs rawdigits)
 - ROIAna

Uses:

- larsoft_v09_82_02d01
- dune10kt_v6_refactored_1x2x6.gdml
- dunefd_hd_backgrounds_1x2x6_v3_5

