Exploring Flavor Anomalies and Dark Matter in $U(1)_{L_e-L_{\mu}}$ model with a scalar Leptoquark

[In collaboration with Shivaramakrishna Singirala, Dhiren Panda and Rukmani Mohanta]

Manas Kumar Mohapatra

University of Hyderabad, India

FPCP 2024, Chulalongkorn University, Bangkok

Outline

- Introduction (Motivation to study the $b
 ightarrow s\ell\ell$ quark decays)
- A $U(1)_{L_e-L_{\mu}}$ model with heavy fermions and $\tilde{R_2}$ leptoquark
- Sensitivity of new physics in $\Lambda_b \to \Lambda^* (\to pK) \ell \ell$ process
- Relic density of Majorana dark matter
- Conclusion

Introduction

- The updated results from LHCb confirmed that the measured values of $R_{K^{(\ast)}}$ observables are consistent with their SM predictions.
- However, there exist a variety of other observables in $b \rightarrow s\ell\ell$ transition in B decays which indicate remarkable deviations from the SM.

	$q^2 {\rm bins}$	Theoretical predictions	Experimental measurements	Deviation
P_5'	[4.0,6.0]	-0.757 ± 0.074	-0.21 ± 0.15 (1; 2)	$\sim 3.3\sigma$
	[4.0, 8.0]	-0.881 ± 0.082	$-0.267^{+0.275}_{-0.269} \pm 0.049$ (3)	$\sim 2.1\sigma$
$\mathcal{B}(B_s \to \phi \mu^+ \mu^-)$	[1.1, 6.0]	$(5.37\pm 0.66)\times 10^{-8}$	$(2.88 \pm 0.22) \times 10^{-8}$ (4; 5; 6)	$\sim 3.6\sigma$
$\mathcal{B}(B_s \to \mu^+ \mu^-)$	-	$(3.66\pm 0.14)\times 10^{-9}$	$(3.09^{+0.46+0.15}_{-0.43-0.11}) \times 10^{-9}$ (7)	$\sim 1.2\sigma$

Table: Current status of $b \rightarrow s \ell^+ \ell^-$ decay observables

A $U(1)_{L_e-L_{\mu}}$ model with heavy fermions and $ilde{R_2}$ leptoquark

	Field	$SU(3)_C \times SU(2)_L \times U(1)_Y$	$U(1)_{L_e-L_\mu}$	Z_2
Fermions	$Q_L \equiv (u,d)_L^T$	(3 , 2 , 1/6)	0	+
	u_R	(3 , 1 , 2/3)	0	+
	d_R	(3, 1, -1/3)	0	+
	$\ell_{lpha L} \equiv (u_{lpha}, lpha)_L$, $lpha = e, \mu, au$	(1, 2, -1/2)	1, -1, 0	+
	$\ell_R\equiv lpha_R$, $lpha=e,\mu, au$	(1, 1, -1)	1, -1, 0	+
	$N_e, N_\mu, N_ au$	(1, 1, 0)	1, -1, 0	-
Scalars	Н	(1, 2, 1/2)	0	+
	η	(1, 2, 1/2)	0	-
	ϕ_2	(1, 1, 0)	2	+
	$ ilde{R}_2$	(3 , 2 , 1/6)	1	-

- Adding three heavy fermions $(N_{\alpha R})$, which mix and the lightest mass eigenstate will be dark matter
- ϕ_2 breaks the new U(1) and gives masses to N_{lpha} and Z'
- R₂ leptoquark along with N_{α} s and Z' provide new physics for $b \to s$ transition.
- η along with heavy fermions generates neutrino mass at one-loop.

The relevant Lagrangian is given by

$$\mathcal{L}_{f} = -\frac{1}{2} M_{\tau\tau} \overline{N_{\tau}^{c}} N_{\tau} - \left(\frac{f_{e}}{2} \overline{N_{e}^{c}} N_{e} \phi_{2}^{\dagger} + \frac{f_{\mu}}{2} \overline{N_{\mu}^{c}} N_{\mu} \phi_{2} + \text{h.c.} \right) - \frac{1}{2} M_{e\mu} (\overline{N_{e}^{c}} N_{\mu} + \overline{N_{\mu}^{c}} N_{e}) \\ - \sum_{l=e,\mu,\tau} (Y_{ll}(\overline{\ell_{L}})_{l} \tilde{\eta} N_{lR} + \text{h.c}) - (y_{qRN} \overline{Q_{L}} \tilde{R}_{2} N_{\mu R} + \text{h.c.}), \\ \mathcal{L}_{G-f} = \left(-g_{e\mu} \overline{e} \gamma^{\mu} e + g_{e\mu} \overline{\mu} \gamma^{\mu} \mu - g_{e\mu} \overline{\nu_{e}} \gamma^{\mu} (1 - \gamma^{5}) \nu_{e} + g_{e\mu} \overline{\nu_{\mu}} \gamma^{\mu} (1 - \gamma^{5}) \nu_{\mu} \right) Z_{\mu}' \\ - g_{e\mu} \overline{N_{e}} Z_{\mu}' \gamma^{\mu} \gamma^{5} N_{e} + g_{e\mu} \overline{N_{\mu}} Z_{\mu}' \gamma^{\mu} \gamma^{5} N_{\mu}, \\ \mathcal{L}_{S} = \left| \left(i \partial_{\mu} - \frac{g}{2} \tau^{a} \cdot W_{\mu}^{a} - \frac{g'}{6} B_{\mu} + g_{e\mu} Z_{\mu}' \right) \tilde{R}_{2} \right|^{2} + \left| (i \partial_{\mu} - 2g_{e\mu} Z_{\mu}') \phi_{2} \right|^{2} \\ + \left| \left(i \partial_{\mu} - \frac{g}{2} \tau^{a} \cdot W_{\mu}^{a} - \frac{g'}{2} B_{\mu} \right) \eta \right|^{2} - V(H, \tilde{R}_{2}, \eta, \phi_{2}).$$

$$(1)$$

In the above, the new scalar doublets are denoted by η and $ilde{R}_2$ are given by

$$\eta = \begin{pmatrix} \eta^+ \\ \eta^0 \end{pmatrix}$$
 and $ilde{R_2} = \begin{pmatrix} ilde{R_2^{2/3}} \\ ilde{R_2^{-1/3}} \end{pmatrix}$.

The fermion and scalar mass matrices take the form

$$M_N = \begin{pmatrix} \frac{1}{\sqrt{2}} f_e v_2 & M_{e\mu} \\ M_{e\mu} & \frac{1}{\sqrt{2}} f_\mu v_2 \end{pmatrix} , \quad M_S = \begin{pmatrix} 2\lambda_H v^2 & \lambda_{H2} v v_2 \\ \lambda_{H2} v v_2 & 2\lambda_2 v_2^2 \end{pmatrix} .$$
(2)

One can diagonalize the above mass matrices by

$$U_{\delta(\zeta)}^T M_{N(S)} U_{\delta(\zeta)} = \text{diag} [M_{N_1(H_1)}, M_{N_2(H_2)}]$$
, where

$$U_{\theta} = \begin{pmatrix} \cos\theta & \sin\theta \\ -\sin\theta & \cos\theta \end{pmatrix},$$
(3)

with
$$\zeta = \frac{1}{2} \tan^{-1} \left(\frac{\lambda_{H2} v v_2}{\lambda_2 v_2^2 - \lambda_H v^2} \right)$$
 and $\delta = \frac{1}{2} \tan^{-1} \left(\frac{2M_{e\mu}}{(f_{\mu} - f_e)(v_2/\sqrt{2})} \right)$.

- We denote the scalar mass eigenstates as H_1 and H_2 , with H_1 is assumed to be observed Higgs at LHC with $M_{H_1} = 125.09$ GeV and v = 246 GeV.
- We indicate N₁ and N₂ to be the fermion mass eigenstates, with the lightest one (N₁) as the probable dark matter candidate in the present work.

Effective Hamiltonian

The most general effective Hamiltonian mediating the $b \rightarrow s l^+ l^-$ transition is given by (8)

$$\mathcal{H}_{\text{eff}} = -\frac{4G_F}{\sqrt{2}} V_{tb} V_{ts}^* \left[\sum_{i=1}^6 C_i O_i + \sum_{i=9,10} \left(C_i O_i + C_i' O_i' \right) \right], \quad (4)$$

where G_F is the Fermi constant, $V_{tb}V_{ts}^{\ast}$ denote the CKM matrix elements.

■ The *O_i*'s, represent dimension-six operators responsible for leptonic/semileptonic processes, are given as

$$O_{9}^{(\prime)} = \frac{\alpha_{\rm em}}{4\pi} (\bar{s}\gamma^{\mu} P_{L(R)} b) (\bar{l}\gamma_{\mu} l),$$

$$O_{10}^{(\prime)} = \frac{\alpha_{\rm em}}{4\pi} (\bar{s}\gamma^{\mu} P_{L(R)} b) (\bar{l}\gamma_{\mu}\gamma_{5} l),$$
(5)

where α_{em} is the fine structure constant.

Constraints on NP coupling(s)

The new Wilson coefficient is given as,

$$C_9^{\rm NP} = -\frac{1}{4\pi} \frac{\sqrt{2}}{4G_F m_{Z'}^2} \frac{1}{\alpha_{em}} \frac{y_{qRN}^2 g_{e\mu}^2}{V_{tb} V_{ts}^*} \mathcal{R}(a,b), \text{ where } a(b) = \frac{m_{N_{1(2)}}^2}{m_{LQ}^2}.$$
 (6)

Impact on the $\Lambda \to \Lambda^* (\to pK) \ell \ell$ process

- In light of anomalies present in $b \to s\ell\ell$ quark level transition decays, we perform an analysis of baryonic $\Lambda_b \to \Lambda^*(\to pK)\mu\mu$ process.
- The differential branching ratio $d\mathcal{B}/dq^2$, and the fraction of longitudinal polarization $F_L(q^2)$ are defined as

$$\frac{d\mathcal{B}}{dq^2} = \frac{1}{3} \left[K_{1cc} + 2K_{1ss} + 2K_{2cc} + 4K_{2ss} + 2K_{3ss} \right],$$

$$F_L = 1 - \frac{2(K_{1cc} + 2K_{2cc})}{K_{1cc} + 2(K_{1ss} + K_{2cc} + 2K_{2ss} + K_{3ss})},$$
(7)

with $K_{(...)}$ are the angular coefficients.

Contd...

Analysis:

• $g_{e\mu} = 0.6$, $y_{qRN} = 0.3$, $m_{Z'} = 500$ GeV, $m_N = 300$ GeV and $\delta = 30^{\circ}$.

Figure: The q^2 dependency of branching ratio (left panel) and the polarisation asymmetry (right panel)in the SM and new physics.

- BR: The presence of NP coupling reduces the branching ratio.
 However, in the low q^2 region, it becomes consistent with the SM contribution.
- *FL*: We do not observe any new physics signatures despite the presence of NP coefficients.

Majorana dark matter

Relic density :

- The lightest fermion N_1 can annihilate via Z', \vec{R}_2 and $H_{1,2}$ portals and contribute to total relic density of the Universe.
- Via Z' boson, N_1N_1 can annihilate to $e\bar{e}, \mu\bar{\mu}, \nu_e\bar{\nu_e}, \nu_\mu\bar{\nu_\mu}$ through s-channel.
- Mediated by $\tilde{R_2}^{2/3}$, N_1N_1 can annihilate to $q_1\overline{q'_1}$ with $q_1, q'_1 = u, c, t$. Via $\tilde{R_2}^{-1/3} N_1N_1$ produce $q_2\overline{q'_2}$ as final state particles with $q_2, q'_2 = d, s, b$ through t-channel.
- With the mediation of scalar Higgs, N_1N_1 can annihilate to $f\bar{f}$, W^+W^- , ZZ, hh, $Z'H_1$ through s-channel.
- The relic density of dark matter is computed by

$$\Omega h^2 = \frac{1.07 \times 10^9 \text{ GeV}^{-1}}{g_*^{1/2} M_{\text{Pl}}} \frac{1}{J(x_f)} \text{, where } J(x_f) = dx \int_{x_f}^{\infty} \frac{\langle \sigma_{\text{eff}} v \rangle(x)}{x^2}.$$
 (8)

$$\langle \sigma v \rangle(x) = \frac{x}{8M_{\rm DM}^5 K_2^2(x)} \int_{4M_{\rm DM}^2}^{\infty} \hat{\sigma} \times (s - 4M_{\rm DM}^2) \sqrt{s} K_1\left(\frac{x\sqrt{s}}{M_{\rm DM}}\right) ds.$$
(9)

Analysis :

• $M_{Z'} = 500$ GeV, $M_{H1} = 125$ GeV, $M_{H2} = 800$ GeV (resonance at $M_{N_1} = M_{\rm prop}/2$) • $\zeta \sim 10^{-3}, \ \delta = 30^{\circ}$

Figure: Relic density vs dark matter mass, displaying dominant Z' portal (left panel) and dictating $\tilde{R_2}$ portal (right panel). Horizontal dashed lines correspond to 3σ bound on relic abundance by Planck data.

- Neutrino mass : Type-I radiative neutrino mass can be obtained at one-loop with heavy fermions and neutral inert doublet components running in the loop.
- * Note : Direct detection and neutrino mass work is still in progress.

Conclusion

- We have investigated $U(1)_{L_e-L_{\mu}}$ extension of SM for a correlative study of dark matter and flavor anomalies.
- With three heavy neutral fermions, $\tilde{R}_2(3, 2, 1/6)$ scalar leptoquark and a U(1) associated Z', the model can provide new physics contribution to $b \to s$ transition (penguin loop).
- We have studied the $\Lambda_b\to\Lambda^*(\to pK)\mu\mu$ process pertaining to $b\to s\mu\mu$ transition.
- The differential branching ratio deviates, and also quite distinguishable from the SM contributions.
- The relic density of lightest Majorana fermion is obtained, consistent with Planck satellite data. The annihilation channels with fermion anti-fermion pair in final state contribute maximally, are mediated by scalar Higgs boson, Z' and \tilde{R}_2 leptoquark.

Thank you!

Reference

- [1] M. Aaboud *et al.*, "Angular analysis of $B^0_d \to K^* \mu^+ \mu^-$ decays in *pp* collisions at $\sqrt{s} = 8$ TeV with the ATLAS detector," *JHEP*, vol. 10, p. 047, 2018.
- [2] R. Aaij et al., "Angular analysis of the $B^0 \rightarrow K^{*0}\mu^+\mu^-$ decay using 3 fb⁻¹ of integrated luminosity," *JHEP*, vol. 02, p. 104, 2016.
- [3] A. Abdesselam et al., "Angular analysis of B⁰ → K*(892)⁰ℓ⁺ℓ⁻," in LHC Ski 2016: A First Discussion of 13 TeV Results, 4 2016.
- [4] R. Aaij *et al.*, "Branching Fraction Measurements of the Rare $B_s^0 \rightarrow \phi \mu^+ \mu^-$ and $B_s^0 \rightarrow f'_2(1525)\mu^+\mu^-$ Decays," *Phys. Rev. Lett.*, vol. 127, no. 15, p. 151801, 2021.
- [5] R. Aaij et al., "Differential branching fraction and angular analysis of the decay $B_s^0 \rightarrow \phi \mu^+ \mu^-$," JHEP, vol. 07, p. 084, 2013.
- [6] R. Aaij *et al.*, "Angular analysis and differential branching fraction of the decay $B_s^0 \rightarrow \phi \mu^+ \mu^-$," *JHEP*, vol. 09, p. 179, 2015.
- [7] R. Aaij et al., "Analysis of Neutral B-Meson Decays into Two Muons," Phys. Rev. Lett., vol. 128, no. 4, p. 041801, 2022.
- [8] C. Bobeth, A. J. Buras, F. Kruger, and J. Urban, "QCD corrections to $\bar{B} \to X_{d,s}\nu\bar{\nu}$, $\bar{B}_{d,s} \to \ell^+\ell^-$, $K \to \pi\nu\bar{\nu}$ and $K_L \to \mu^+\mu^-$ in the MSSM," *Nucl. Phys. B*, vol. 630, pp. 87–131, 2002.