

Exploring Constraints on Simplified Dark Matter Model Through Flavor and Electroweak Observables

Lipika Kolay

IIT Guwahati

Based on arXiv: 2403.20303 In Collaboration with: Dr. Soumitra Nandi

FPCP 2024

Lipika Kolay

FPCP 2024

1/20

Standard Model prediction is validated to high precision, however

- Matter-Anti matter asymmetry
 - ► $\eta = \frac{n_B \bar{n}_B}{\gamma} \sim 10^{-9}$
- Output Neutrino oscillation
 - Non-zero mass of neutrino
- Oark Matter
 - $\blacktriangleright~\sim 25\%$ of total energy budget is dark matter
 - Observational Evidances: Galaxy Rotation Curve, Gravitational lensing, CMBR
 - ► WIMP, SIMP, FIMP
- and many more.....

⇒ ↓ = ↓ = | = √Q ∩

The Simplified Model

Model Lagrangian:

$$\mathcal{L} = \mathcal{L}_{SM} + \frac{1}{2}\bar{\chi}(i\partial - m_{\chi})\chi + \frac{1}{2}\partial_{\mu}S\partial^{\mu}S - \bar{\chi}(c_{s\chi} + ic_{p\chi}\gamma_5)\chi S - \bar{\psi}(c_{s\psi} + ic_{p\psi}\gamma_5)\psi S - V(S, H) + \mathcal{L}_{VVS}.$$

Where,

$$\begin{aligned} \mathcal{L}_{VVS} &= -c'_w \ W^+_\mu W^{\mu-} S - \frac{c'_z}{2} \ Z_\mu Z^\mu S \\ V(S,H) &= \mu_S^2 S^2 + \frac{\lambda_4}{4!} S^4 + \frac{\lambda_3}{3!} S^3 + \lambda_1 S H^\dagger H + \lambda_2 S^2 H^\dagger H \,, \end{aligned}$$

Under $\mathcal{Z}_2 :: \chi \to -\chi$.

Yukawa coupling of **S**- ψ - ψ re-scaled as (MFV):

$$\begin{split} \bar{\psi}(c_{s\psi} + ic_{p\psi}\gamma_5)\psi S \\ = m_{\psi}\bar{\psi}(c_s + ic_p\gamma_5)\psi S \,. \end{split}$$

where, $c_s = \frac{\sqrt{2}g_s}{v}, c_p = \frac{\sqrt{2}g_p}{v}$. Gauge couplings are re-scaled as: $c'_V = 2m_V^2 c_G$.

Contribution to FCNC Vertex

- b s S will be modified as:
 - vertex correction
 - external leg correction

- Charm and up-quark mediated diagrams are also possible.
- $b \rightarrow d \ S$ and $s \rightarrow d \ S$ vertices can be drawn in similar way.

b-s-S vertex correction

Total diagram contribution:

$$\mathcal{L}_{eff}^{bsS} = \frac{2\sqrt{2}G_F M_W^2}{16\pi^2} \left(C_1 \left[\bar{b}(m_b P_L + m_s P_R) s \right] + C_2 \left[\bar{b}(m_b P_L - m_s P_R) s \right] \right)$$

- Scalar and pseudoscalar operators
- $C_1, C_2 \Rightarrow$ loop function \Rightarrow have divergences.
- Divergences can be absorbed by RGE of coupling (in LLA):

$$\begin{split} C_1(\Lambda) &= l_1 + \frac{3m_t^2}{2m_w^2} \left(c_s + c_G \log \frac{m_t^2}{m_W^2} \right) \log \frac{\Lambda^2}{m_t^2}, \\ C_2(\Lambda) &= l_2 + \frac{m_t^2}{2m_w^2} (-ic_p) \log \frac{\Lambda^2}{m_t^2}. \end{split}$$

*I*₁, *I*₂ → Finite part of loop integration, Λ → cutoff scale.
We also have b - d - S, s - d - S FCNC vertices in this model

Lipika Kolay	FPCP 2024	5 / 20
Lipika Rolay	1101 2021	0/20

Meson Mixing

FIGURE: Feynman diagrams contributing to meson mixing

Generated in 1-loop box diagram in SM:

[arXiv:hep-ex/0103016v1]

Mixing observable : mass difference

$$\Delta M_{SM}^{q} = \frac{|\mathcal{M}|}{m_{B_{q}}} = \frac{G_{F}^{2}}{6\pi^{2}} m_{B_{q}} f_{B_{q}}^{2} B_{B_{q}} \eta_{B} m_{W}^{2} |V_{td}^{*} V_{tb}|^{2} f\left(\frac{m_{t}^{2}}{m_{W}^{2}}\right)$$

$$\Delta M_{tot} = \Delta M_{SM} + \Delta M_{NP},$$

$$\Delta = \frac{\Delta M_{NP}}{\Delta M_{SM}}, \text{ with } \Delta M_{NP} = \frac{|\mathcal{M}_{NP}|}{m_B}$$

$$\Delta M_{tot} = \Delta M_{SM}(1 + \Delta)$$

$$B_0 - \bar{B}_0 \approx 7.5\% \text{ NP contribution.}$$

Wilson Coeffs, Rare and Semileptonic Decays

The low energy effective Hamiltonian for $b \rightarrow s\ell\ell$:

[arXiv:1205.5811]

Wilson Coefficients:

$$\begin{aligned} C'_{S} &= \frac{1}{e^{2}} \frac{m_{W}^{2} m_{\ell}}{M_{S}^{2}} \frac{m_{s} c_{s}}{m_{b}} \left(C_{1}(\Lambda) + C_{2}(\Lambda) \right) , \quad C'_{P} &= \frac{1}{e^{2}} \frac{m_{W}^{2} m_{\ell}}{M_{S}^{2}} \frac{m_{s}(ic_{P})}{m_{b}} \left(C_{1}(\Lambda) + C_{2}(\Lambda) \right) , \\ C_{S} &= \frac{1}{e^{2}} \frac{m_{W}^{2}}{M_{S}^{2}} m_{\ell} c_{s} \left(C_{1}(\Lambda) - C_{2}(\Lambda) \right) , \quad C_{P} &= \frac{1}{e^{2}} \frac{m_{W}^{2}}{M_{S}^{2}} m_{\ell} (ic_{P}) \left(C_{1}(\Lambda) - C_{2}(\Lambda) \right) . \end{aligned}$$

- From $b \rightarrow s\ell\ell$ process: branching ratios, Isospin asymmetries, LFUV observables, angular observables.
- Performed a global fit, taking updated values of R_K , R_{K^*} by LHCb. [arXiv:2212.09152]

Rare Decays

$$\begin{split} &\mathcal{B}r(B_0^{\rm s} \to \mu^+\mu^-) = (3.09^{+0.46}_{-0.43} \, {}^{+0.15}_{-0.11}) \times 10^{-9} \\ &\mathcal{B}r(B_0 \to \mu^+\mu^-) = (0.12^{+0.08}_{-0.07} \pm 0.01) \times 10^{-9} \\ &\mathcal{B}r(K_L \to \mu^+\mu^-) = (6.84 \pm 0.11) \times 10^{-9} \\ &\mathcal{B}r(K_S \to \mu^+\mu^-) < 2.1 \times 10^{-10} \end{split}$$

[PTEP 2022 (2022) 083C01, PhysRevLett.128.041801, PhysRevLett.125.231801]

• Sensitive to scalar and pseudoscalar operators.

Branching Ratio in BSM scenario

$$Br(B_0 \to \mu^+ \mu^-)^{tot} = \tau_{B_0} f_B^2 m_B^3 \frac{G_F^2 \alpha^2}{64\pi^3} |V_{ts}^* V_{tb}|^2 \beta_\mu(m_B^2) [\frac{m_B^2}{m_b^2} |\mathbf{C_s} - \mathbf{C'_s}|^2 (1 - \frac{4m_\mu^2}{m_B^2}) \\ + |\frac{m_B}{m_b} (\mathbf{C_p} - \mathbf{C'_p}) + 2\frac{m_\mu}{m_B} (C_{10} - C'_{10})|^2]$$

 $\left| eta_\ell(q^2) = \sqrt{1 - 4 m_\ell^2/q^2}
ight|$, $f_B o$ decay constant of B_0 meson.

8 / 20

8 / 20

[1205.5811]

Contribution to FCCC Vertex

- Vertex correction
- Counter term

Loop Contribution:

$$\mathcal{L}^{ ext{eff}}_{u_i
ightarrow d_jW} = rac{-gV^*_{ij}}{\sqrt{2}}\left[m{\mathcal{C}}_{VL}ar{d}_j\gamma_\mu(1-\gamma_5)u_i + m{\mathcal{C}}_{VR}ar{d}_j\gamma_\mu(1+\gamma_5)u_i
ight]W^\mu.$$

FPCP 2024

Anomalous couplings : $t \rightarrow bW_{\mu}$ decay

The general Lagrangian for this decay:

[arXiv:1707.05393]

$$\mathcal{L}_{tbW} = -\frac{g}{\sqrt{2}}\bar{b}\gamma_{\mu}(V_{L}P_{L} + V_{R}P_{R})tW_{\mu} - \frac{g}{\sqrt{2}}\bar{b}\frac{i\sigma_{\mu\nu}q_{\nu}}{m_{W}}(g_{L}P_{L} + g_{R}P_{R})tW_{\mu} + h.c.$$

- \blacktriangleright $V_L = V_{tb}$ in SM.
- \triangleright V_R, g_I and g_R : purely NP.

In this model: $V_{L} = V_{tb}^{*} (1 + C_{VL}),$ $V_R = V_{+h}^* C_{VR}$.

	95% CL interval				
Coupling	ATLAS	CMS	ATLAS+CMS combination		
$Re(V_R)$	[-0.17, 0.25]	[-0.12, 0.16]	[-0.11, 0.16]		
$Re(g_L)$	[-0.11, 0.08]	[-0.09, 0.06]	[-0.08, 0.05]		
$\operatorname{Re}(g_{\mathbb{R}})$	[-0.03, 0.06]	[-0.06, 0.01]	[-0.04, 0.02]		
V_L		$0.995 \pm$	0.021		

TABLE: Experimental limits on the coefficients of left and right handed vector, tensor current in $t
ightarrow b W^-_\mu$ decay.

[PDG:2022.2005.03799.2004.12181.1612.02577]

Lipika Kolay

FPCP 2024

◆□▶ ◆□▶ ◆三▶ ◆三▶ ショー ショク 10/20

FCCC Process: Semileptonic decays

Differential decay rate

$$\frac{d\Gamma(P \to M\ell\nu_{\ell})}{dq^2} = \frac{G_F^2 |V_{u_l d_j}|^2}{\pi^3 m_P^2} q^2 \sqrt{\lambda_M(q^2)} \left(1 - \frac{m_{\ell}^2}{q^2}\right) |1 + C_{VL} + C_{VR}|^2 \left\{ \left(1 + \frac{m_{\ell}^2}{2q^2}\right) H_{V,0}^{s-2} + \frac{3}{2} \frac{m_{\ell}^2}{q^2} H_{V,t}^{s-2} \right\}.$$

Branching fraction

$$\mathcal{B}(P \to \ell \nu_\ell) = \frac{\tau_P}{8\pi} m_P m_\ell^2 f_P^2 G_F^2 \left(1 - \frac{m_\ell^2}{m_P^2}\right)^2 \left|V_{u_i d_j}(1 + C_{VL} - C_{VR})\right|^2.$$

• Will impact the overall normalisation, not the q^2 shapes.

CKM element modifies as:

$$V_{u_i d_i}' = V_{u_i d_j} (1 + \mathcal{C}_{VL} \pm \mathcal{C}_{VR})$$

Performed CKM fit using inputs from those semileptonic and leptonic decays.

Lipika Kolav	FPCP 2024	11 / 20
Lipika Rolay	1101 2021	11/20

Electroweak observables: W mass anomaly

$$m_W^{SM}=80357\pm 6~{
m MeV}$$

$$V_{\mu} \sim V_{\mu} \sim V_{\mu}$$

 $m_W^{CDF} = 80.4335 \pm 0.0094 \text{GeV}$ $m_W^{LHCb} = 80.354 \pm 0.030 \text{GeV}$ $m_W^{ATLAS} = 80.360 \pm 0.016 \text{GeV}$ $m_W^{D0} = 80.367 \pm 0.023 \text{GeV}$

[Science 376(2022)170,2109.01113,ATLAS'23,1203.0293]

Loop contribution

$$\Sigma_{V}(q^{2}) = \left(g^{\mu\nu} - \frac{q^{\mu}q^{\nu}}{q^{2}}\right)\Sigma_{V,\tau}(q^{2}) + \frac{q^{\mu}q^{\nu}}{q^{2}}\Sigma_{V,L}(q^{2}).$$

$$\Delta r^{\delta\rho} = -\frac{c_w^2}{s_w^2} \Delta \rho = -\frac{c_w^2}{s_w^2} \left(\frac{\Sigma_{Z,T}(0)}{M_Z^2} - \frac{\Sigma_{W,T}(0)}{M_W^2} \right) = 1 - \frac{\pi \alpha_{em}}{\sqrt{2}G_F} \frac{1}{M_W^2 \left(1 - \frac{M_W^2}{M_Z^2}\right)}.$$

Observable considered

$$\delta(\Delta r) = (\Delta r)_{exp} - (\Delta r)_{SM}$$

FPCP 2024

Electroweak observables: Z-pole Observables

Decay width

Loop corrected couplings:

 $egin{aligned} & \mathbf{g}_{af}
ightarrow \mathbf{a}_{f} + \Delta \mathbf{a}_{f}^{NP} \,, \ & \mathbf{g}_{vf}
ightarrow \mathbf{v}_{f} + \Delta \mathbf{v}_{f}^{NP} \end{aligned}$

Observables:

$$R_{\ell} = \frac{\Gamma_{had}}{\Gamma_{\ell}}; \quad R_{c} = \frac{\Gamma_{c}}{\Gamma_{had}}; \quad R_{b} = \frac{\Gamma_{b}}{\Gamma_{had}}; \quad A_{FB} = \frac{\sigma_{F} - \sigma_{B}}{\sigma_{F} + \sigma_{B}}$$

$$\Gamma_{\ell} = \frac{1}{3}(\Gamma_{e} + \Gamma_{\mu} + \Gamma_{\tau})$$

$$\Gamma_{had} = \Gamma_u + \Gamma_d + \Gamma_s + \Gamma_c + \Gamma_b.$$

Lipika Kolay

FPCP 2024

13 / 20

Combined Constraint on c_s , c_p and M_S

FIGURE: The allowed parameter space in the c_s - c_p and c_p - c_G planes for $\Lambda = 2$ TeV is determined by considering all flavour and electroweak observables.

C	ombi	ned	Constraint	t on c_s ,	c_p, c_G and	c_G
	۸ [TeV]	<i>Ms</i> [GeV]	$c_s imes 10^2$ [GeV ⁻¹]	c_p [GeV ⁻¹]	$c_G imes 10^3 \ [{ m GeV}^{-1}]$	$\Delta M_W imes 10^2$ [GeV]
		250	$\textbf{0.027} \pm \textbf{1.734}$	$\textbf{0.0} \pm \textbf{0.018}$	-0.820 ± 1.413	$\textbf{0.409} \pm \textbf{1.408}$
	1	500	-0.048 ± 1.953	$\textbf{0.0} \pm \textbf{0.020}$	-1.013 ± 1.755	$\textbf{0.406} \pm \textbf{1.405}$
		800	-0.172 ± 2.239	0.0 ± 0.022	-1.333 ± 2.275	$\textbf{0.410} \pm \textbf{1.399}$
		250	$\textbf{0.038} \pm \textbf{1.457}$	0.0 ± 0.015	-0.684 ± 1.174	0.410 ± 1.409
	2	500	0.005 ± 1.558	$\textbf{0.0} \pm \textbf{0.016}$	-0.782 ± 1.353	$\textbf{0.407} \pm \textbf{1.408}$
	-	800	0.032 ± 1.662	$\textbf{0.0} \pm \textbf{0.017}$	$\textbf{0.899} \pm \textbf{1.546}$	$\textbf{0.405} \pm \textbf{1.392}$
		1000	0.058 ± 1.726	$\textbf{0.0} \pm \textbf{0.017}$	$\textbf{0.982} \pm \textbf{1.690}$	$\textbf{0.404} \pm \textbf{1.391}$

TABLE: Fit results of the parameters c_s , c_p and c_G for different combinations of Λ and M_S , when all the observables of table are considered along with weighted mean data of $\delta(\Delta r)$ observable from LHCb, ATLAS and D0 experiment. The p-value for the fit is ~ 30.49% with 42 d.o.f. The last column shows the prediction of the ΔM_W value from this fit result for each case.

DM Phenomenology

- $\chi \Rightarrow$ Fermionic DM
- **DM + DM** \rightarrow Annihilation channels:

• Direct Detection:

• Observed relic density : $\Omega h^2 = 0.012 \pm 0.001$

[Planck 2018]

 Spin Independent Direct Detection crossection (LZ-2022, PandaX-4T, XENON1T)

16 / 20

DM Phenomenology

• For $c_{s\chi} > 0.1$, c_s very small and $M_S \ge 600 \text{GeV}$. For $c_{s\chi} < 0.1$ and $M_S < 500 \text{GeV}$, $c_s \sim 10^{-3}$, from DD.

▶ For $m_{\chi} \ge 500 \text{GeV}$ and $c_{p\chi} > 0.3$, $c_p \sim 10^{-3}$, from observed relic density.

- ▶ For $c_{s\chi} < 0.1$, $c_{p\chi} \sim 0.1$, for $m_{\chi} > 400$ GeV. and $c_{p\chi} \sim 1$ for $m_{\chi} \leq 350$ GeV.
- For $c_{p\chi} \le 0.4$, $M_S > 400$, $m_{\chi} > 300 \text{GeV}$ and for $c_{p\chi} \ge 0.4$, $M_S \ge 500$, $m_{\chi} < 300 \text{GeV}$.

Correlation: DM + Flavor Parameter Space

► For $c_{s\chi} \gtrsim 0.3$, $|c_s| \le 0.005 \text{GeV}^{-1}$. $M_S < 400 \text{GeV}$, $c_s < 0.005 \text{GeV}^{-1}$ for even larger $c_{s\chi}$.

▶ $M_S > 500 \text{GeV}, c_s$ approaches to 0.001GeV^{-1} for $c_{p\chi}$ approaches to 1.

 $c_{s\chi}, c_{p\chi}$, range, correlation remains same, except lesser number of allowed points.

• Depletion in the $M_S = 2m_{\chi}$ region.

18 / 20

- Fermionic DM (χ) model with spin-0 mediator (S) is considered.
- **(D)** Effective FCNC and FCCC vertices are obtained from loop calculations.
- **(1)** Constraint on mediator-fermion couplings c_s , c_p and c_G obtained from FCNC, FCCC and EW processes : $c_s \leq 0.01 \text{GeV}^{-1}$, $c_p \leq 0.01 \text{GeV}^{-1}$ and $c_G \leq 0.002 \text{GeV}^{-1}$.
- Source of the parameters studied from the DM-phenomenology.
- Obtained final parameter space allowed by all the low energy and other processes together with DM constraints.

Thank You!

★□▶ ★■▶ ★ => ★ => 目目 のQC

DM+Flav PArameter Space with CDF data included

Other Plot of DM and DM+Flav

• Other DM plots:

Lipika Kolay

22 / 20

22 / 20

ъ

Combined Fit with CDF data included

۸ [TeV]	<i>M5</i> [GeV]	$\begin{array}{c} c_s \times 10^2 \\ [{\rm GeV}^{-1}] \end{array}$	c_p [GeV ⁻¹]	$c_G imes 10^3 \ [{ m GeV}^{-1}]$	$\Delta M_W imes 10^2$ [GeV]
	250	-0.090 ± 1.747	0.0 ± 0.018	2.770 ± 0.259	4.657 ± 0.869
1	500	$\textbf{0.162} \pm \textbf{2.014}$	$\textbf{0.0} \pm \textbf{0.020}$	$\textbf{3.432} \pm \textbf{0.321}$	$\textbf{4.654} \pm \textbf{0.869}$
	800	0.566 ± 3.616	0.0 ± 0.033	$\textbf{4.487} \pm \textbf{0.419}$	4.645 ± 0.869
	250	-0.130 ± 1.493	0.0 ± 0.015	2.305 ± 0.215	4.658 ± 0.869
2	500	-0.018 ± 1.560	$\textbf{0.0} \pm \textbf{0.015}$	$\textbf{2.646} \pm \textbf{0.247}$	$\textbf{4.656} \pm \textbf{0.869}$
-	800	0.107 ± 1.693	0.0 ± 0.016	$\textbf{3.048} \pm \textbf{0.285}$	$\textbf{4.653} \pm \textbf{0.869}$
	1000	0.197 ± 1.829	0.0 ± 0.017	$\textbf{3.330} \pm \textbf{0.311}$	4.651 ± 0.869

TABLE: Fit results of the parameters c_s , c_p and c_G for different combinations of Λ and M_S , all the observables of FCCC, FCNC, EW along with $\delta(\Delta r)$ (CDF, LHCb, ATLAS, D0) are taken into account, with a p-value of $\sim 3\%$ for 45 d.o.f. The last column shows the prediction of the value of ΔM_W from this fit result for each case.

FPCP 2024

23 / 20

0

Λ[TeV]	$M_S[\text{GeV}]$	$c_s[\text{GeV}^{-1}]$	$c_p[\text{GeV}^{-1}]$	$c_G[\text{GeV}^{-1}]$
	250	0.43(181)	-0.51(44)	-0.26(122)
1	500	0.87(363)	-1.02(886)	-0.52(245)
	800	-1.39(581)	1.63(142)	0.84(392)
	250	0.37(152)	-0.43(38)	-0.24(113)
	500	0.73(307)	-0.86(75)	-0.49(227)
2	800	1.17(491)	-1.38(120)	-0.78(363)
	1000	-1.47(615)	1.72(150)	0.97(454)

TABLE: Fit results of the couplings c_s, c_p and c_G from a fit to the available data on $B \to K^{(*)}\mu^+\mu^-$ and $B_s \to \phi\mu^+\mu^-$ decays and on $R(K^{(*)})$.

24 / 20

∃ ↓ ↓ ∃ ↓ ∃ | ∃ ∧ Q ∩

BACKUP

$$\Delta m_{w} = -\frac{1}{2} m_{w} \frac{s_{w}^{2}}{c_{w}^{2} - s_{w}^{2}} \delta(\Delta r)$$

$$\Delta r^{\delta \rho} = -\frac{c_{w}^{2}}{s_{w}^{2}} \Delta \rho$$

$$\rho = \frac{G_{NC}}{G_{CC}}$$

$$\Delta \rho = \frac{\Sigma_{Z}(0)}{m_{z}^{2}} - \frac{\Sigma_{W}(0)}{m_{w}^{2}}$$

$$(1)$$

Measured Value M_W	Reference	Δr	$\delta(\Delta r)$
$80.357\pm0.006~\text{GeV}$	SM [?]	-0.03068 ± 0.00040	_
$80.4335\pm0.0094~\text{GeV}$	CDF [?]	-0.03526 ± 0.00059	$(-4.58316 \pm 0.66899) imes 10^{-3}$
$80.354\pm0.030~\text{GeV}$	LHCb[?]	-0.03050 ± 0.00190	$(0.17915 \pm 1.92090) imes 10^{-3}$
$80.360\pm0.016~\text{GeV}$	ATLAS[?]	-0.03086 ± 0.00097	$(-0.17919 \pm 1.02076) imes 10^{-3}$
$80.367\pm0.023~\text{GeV}$	D0 [?]	-0.03128 ± 0.00156	$(-0.59747 \pm 1.42068) imes 10^{-3}$

三日 のへの ≣ ►

Lipika Kolay **FPCP 2024** 25 / 20

Possible Higher Dimensional Models

The fermion-mediator coupling can be derived from

$$\mathcal{L}_{dim5} = -\frac{C}{\Lambda} [\bar{\psi}_L i \gamma_5 H \psi_R S] - y_f [\bar{\psi}_L H \psi_R] + h.c$$
(5)

The couplings will then be:

$$\left(-\frac{C\nu}{\Lambda\sqrt{2}}\cos\theta + \left(\frac{Cu}{\Lambda\sqrt{2}} + \frac{y_{\psi}\alpha}{\sqrt{2}}\right)\sin\theta\right)[\bar{\psi}i\gamma_5\psi s] + \left(\frac{C\nu\alpha}{\Lambda\sqrt{2}}\cos\theta + \left(\frac{Cu\alpha}{\Lambda\sqrt{2}} - \frac{y_{\psi}}{\sqrt{2}}\right)\sin\theta\right)[\bar{\psi}\psi s]$$
(6)

The gauge-couplings can be derived from:

$$\mathcal{L}_{gauge} = \frac{C_V}{\Lambda} S |D_{\mu}H|^2 \tag{7}$$

with

$$c'_{w} = 2m_{W}^{2} \left(\frac{1}{\nu} \sin \theta + \frac{C_{V}}{2\Lambda} \cos \theta \right)$$
$$c'_{z} = 2m_{Z}^{2} \left(\frac{1}{\nu} \sin \theta + \frac{C_{V}}{2\Lambda} \cos \theta \right)$$
(8)

Lipika Kolay	FPCP 2024	26 / 20	26
--------------	-----------	---------	----

$$\Gamma_{tot}(Z \to f\bar{f}) = \frac{N_c^b}{48} \frac{\alpha}{s_w^2 c_w^2} m_Z \sqrt{1 - \mu_b^2} \left(|g_{af}|^2 (1 - \mu_b^2) + |g_{vf}|^2 (1 + \frac{\mu_b^2}{2}) \right) (1 + \delta_f^0) (1 + \delta_b) (1 + \delta_{QCD}) (1 + \delta_{QED}) (1 + \delta_{\mu}^f)$$
(9)

 $R_{\ell}^{exp} = 20.767 \pm 0.025, \quad R_{c}^{exp} = 0.1721 \pm 0.0030, \quad R_{b}^{exp} = 0.21629 \pm 0.00066$

 $R_{\ell}^{SM} = 20.751 \pm 0.005, \quad R_{c}^{SM} = 0.17223 \pm 0.00005, \quad R_{b}^{SM} = 0.21580 \pm 0.00015$

$$A_{FB} = \frac{\sigma_F - \sigma_B}{\sigma_F + \sigma_B}$$
$$A_{FB}^{0,f} = \frac{3}{4} A_e A_f, \quad A_e = 2 \frac{g_{\nu\ell} g_{a\ell}}{(g_{\nu\ell})^2 + (g_{a\ell})^2}, \quad A_f = 2 \frac{g_{\nu f} g_{af}}{(g_{\nu f})^2 + (g_{af})^2}$$
(10)

If we write this as: ${\cal A}_{FB}^{0,f}={\cal A}_{FB}^{0,f(SM)}+\delta {\cal A}_{FB}^{0,f},$ then

$$\delta A_{FB}^{0,f} = \frac{3}{4} [\delta A_{\ell} A_{f}^{SM} + A_{\ell}^{SM} \delta A_{f}]$$
(11)

 $\begin{array}{l} A_{FB} = \frac{N_f - N_B}{N_f + N_B} \\ N_f \rightarrow \text{Number of events with } f \text{ going to forward hemisphere.} \\ N_B \rightarrow \text{backwords. } A_e \rightarrow \text{creation of Z boson in } e^+e^- \text{ annihilation. } A_f \text{ decay of Z to } f\bar{f}. \end{array}$

ヨト イヨト ヨヨ のへの

CKM-FIT OBSERVABLES

Observable	Value	Reference
$ V_{ud} $ (nucl)	$0.97373 \pm 0.00009 \pm 0.00053$	[?]
$ V_{us} f_+^{K ightarrow\pi}(0)$	0.2165 ± 0.0004	[?]
$ V_{cd} _{\nu N}$	0.230 ± 0.011	[?]
$ V_{cs} _{W \to c\overline{s}}$	$0.94^{+0.32}_{-0.26}\pm 0.13$	[?]
$ V_{ub} _{excl}$	$(3.91\pm0.13) imes10^{-3}$	[?]
$ V_{cb} _{B \to D}$	$(40.84 \pm 1.15) imes 10^{-3}$	[?]
$ \left \begin{array}{c} \mathcal{B}(\Lambda_{p} \rightarrow p \mu^{-} \bar{\nu}_{\mu})_{q^{2} > 15} / \mathcal{B}(\Lambda_{p} \rightarrow \Lambda_{c} \mu^{-} \bar{\nu}_{\mu})_{q^{2} > 7} \right. $	$(0.947\pm0.081) imes10^{-2}$	[?]
${\cal B}(B^- o au^- ar u_ au)$	$(1.09\pm0.24) imes10^{-4}$	[?]
${\cal B}(D^s o \mu^- ar u_\mu)$	$(5.51\pm0.16) imes10^{-3}$	[?]
${\cal B}(D^s o au^- ar u_ au)$	$(5.52\pm0.24) imes10^{-2}$	[?]
${\cal B}(D^- o \mu^- ar u_\mu)$	$(3.77\pm0.18) imes10^{-4}$	[?]
${\cal B}(D^- o au^-ar u_ au)$	$(1.20\pm0.27) imes10^{-3}$	[?]
${\cal B}({\cal K}^- o e^- ar u_e)$	$(1.582\pm0.007) imes10^{-5}$	[?]
${\cal B}({\cal K}^- o \mu^- ar u_\mu)$	0.6356 ± 0.0011	[?]
${\cal B}(au^- o {\cal K}^- ar u_ au)$	$(0.6986 \pm 0.0085) imes 10^{-2}$	[?]
${\cal B}({\cal K}^- o \mu^- ar u_\mu)/{\cal B}(\pi^- o \mu^- ar u_\mu)$	1.3367 ± 0.0029	[?]
$egin{array}{llllllllllllllllllllllllllllllllllll$	$(6.467\pm0.84) imes10^{-2}$	[?]
${\cal B}(B_s o \mu^+ \mu^-)$	$(3.09^{+0.46}_{-0.43}~^{+0.15}_{-0.11}) imes 10^{-9}$	[?]

Lipika Kolay

FPCP 2024

< ∃ →

CKM-FIT OBSERVABLES

Observable	Value	Reference
$ V_{cd} f_+^{D \to \pi}(0)$	0.1426 ± 0.0018	[?]
$ V_{cs} f_+^{D\to K}(0)$	0.7180 ± 0.0033	[?]
$ \varepsilon_K $	$(2.228\pm0.011) imes10^{-3}$	[?]
Δm_d	$(0.5065\pm0.0019)~{ m ps}^{-1}$	[?]
Δm_s	$(17.7656 \pm 0.021) \; { m ps}^{-1}$	[?]
sin 2 eta	0.699 ± 0.017	[?]
ϕ_s	-0.057 ± 0.021	[?]
α	$(85.2^{+4.8}_{-4.3})^{\circ}$	[?]
γ	$(66.2^{+3.4}_{3.6})^{\circ}$	[?]
V_L	0.995 ± 0.021	[?]
V_R	[-0.11, 0.16]	[?, ?, ?, ?]
M_W	$80.4335\pm0.0094 \textit{GeV}$	[?]
R_b^0	0.21629 ± 0.00066	[?]
R_ℓ	20.767 ± 0.025	[?]
$A_{FB}^{0,b}$	0.0992 ± 0.0016	[?]
A_b	0.923 ± 0.020	[?]
Ac	0.670 ± 0.027	[?]

Lipika Kolay

FPCP 2024

30 / 20

$b \rightarrow s \ell^+ \ell^-$ Processes

The effective Hamiltonian describing the $b
ightarrow {\it s} \ell^+ \ell^-$ transitions at low energy is

$$\mathcal{H}_{eff} = -\frac{4 G_F}{\sqrt{2}} V_{tb} V_{ts}^* \left[\sum_{i=1}^{6} C_i(\mu) \mathcal{O}_i(\mu) + \sum_{i=7,8,9,10,P,S,T,T5} \left(C_i(\mu) \mathcal{O}_i + C_i'(\mu) \mathcal{O}_i' \right) \right]$$

The operator basis :

$$\begin{split} \mathcal{O}_{7} &= \frac{e}{g^{2}} m_{b} (\bar{s}\sigma_{\mu\nu}P_{R}b)F^{\mu\nu}, \\ \mathcal{O}_{8} &= \frac{1}{g} m_{b} (\bar{s}\sigma_{\mu\nu}T^{a}P_{R}b)G^{\mu\nu} a \\ \mathcal{O}_{9} &= \frac{e^{2}}{g^{2}} (\bar{s}\gamma_{\mu}P_{L}b)(\bar{\ell}\gamma^{\mu}\ell), \\ \mathcal{O}_{10} &= \frac{e^{2}}{g^{2}} (\bar{s}\gamma_{\mu}P_{L}b)(\bar{\ell}\gamma^{\mu}\gamma_{5}\ell), \\ \mathcal{O}_{5} &= \frac{e^{2}}{16\pi^{2}} (\bar{s}P_{R}b)(\bar{\ell}\ell), \\ \mathcal{O}_{P} &= \frac{e^{2}}{16\pi^{2}} (\bar{s}P_{R}b)(\bar{\ell}\gamma_{5}\ell), \\ \mathcal{O}_{T} &= \frac{e^{2}}{16\pi^{2}} (\bar{s}\sigma_{\mu\nu}b)(\bar{\ell}\sigma^{\mu\nu}\ell), \end{split}$$

$$\begin{split} \mathcal{O}_{7}' &= \frac{e}{g^{2}} m_{b} (\bar{s}\sigma_{\mu\nu}P_{L}b)F^{\mu\nu}, \\ \mathcal{O}_{8}' &= \frac{1}{g} m_{b} (\bar{s}\sigma_{\mu\nu}T^{a}P_{L}b)G^{\mu\nu\,a}, \\ \mathcal{O}_{9}' &= \frac{e^{2}}{g^{2}} (\bar{s}\gamma_{\mu}P_{R}b)(\bar{\ell}\gamma^{\mu}\ell), \\ \mathcal{O}_{10}' &= \frac{e^{2}}{g^{2}} (\bar{s}\gamma_{\mu}P_{R}b)(\bar{\ell}\gamma^{\mu}\gamma_{5}\ell), \\ \mathcal{O}_{5}' &= \frac{e^{2}}{16\pi^{2}} (\bar{s}P_{L}b)(\bar{\ell}\ell), \\ \mathcal{O}_{F}' &= \frac{e^{2}}{16\pi^{2}} (\bar{s}P_{L}b)(\bar{\ell}\gamma_{5}\ell), \\ \mathcal{O}_{T5} &= \frac{e^{2}}{16\pi^{2}} (\bar{s}\sigma_{\mu\nu}b)(\bar{\ell}\sigma^{\mu\nu}\gamma_{5}\ell), \end{split}$$

< □ > < □ > < Ξ > < Ξ > < Ξ ≥ < Ξ = の Q @

31 / 20

Lipika Kolay

FPCP 2024