

Double Quarkonium Studies at CMS

Tsinghua University

Zhen Hu on behalf of the CMS Collaboration

May 30, 2024

ATLAS

The Large Hadron Collider (LHC) at CERN is the world's largest particle collider. It lies in a tunnel 27 kilometres in circumference and as deep as 175 metres beneath the France–Switzerland border near Geneva.

LHC 27 km

CERN Prévess

LICE

the Compact Solenoid detector

3.8T Superconducting Solenoid

Hermetic (|η|<5.2) Hadron Calorimeter (HCAL) [scintillators & brass]

All Silicon Tracker (Pixels and Microstrips)

Redundant Muon System (RPCs, Drift Tubes, Cathode Strip Chambers)

Lead tungstate E/M Calorimeter (ECAL)

May 30, 2024, FPCF

CMS dimuon & trigger

Excellent detector for B physics, especially for studies with muons

- Muon system
 - High-purity muon ID, $\Delta m/m \sim 0.6\%$ for J/ ψ
- Silicon Tracking detector, B=3.8T
 - $\Delta p_T/p_T \sim 1\%$ & excellent vertex resolution
- Special triggers for different analyses at increasing Inst. Lumi.

– μ p_T, ($\mu\mu$) p_T, ($\mu\mu$) mass, ($\mu\mu$) vertex, and additional μ Zhen Hu May 30, 2024, FPCP

- MPI (multiple parton scattering) studies are important for
 - Probing partonic structure of proton
 - Tuning of Monte Carlo event generators
 - Background for new physics searches
- Associated heavy flavour production

 Initial state: e.g. sensitivity to the concepts of single (SPS), double (DPS) and triple (TPS) parton scattering

Final state: e.g. sensitivity to heavy flavour hadron formation (colour singlet vs. colour octet), sensitivity to resonant multi-heavy-flavor states

- Double J/ ψ in pPb at 8.16 TeV (2024)
 - First observation
- Double J/ ψ in pp at 13 TeV (2023, Kai Yi's talk)
 - New structures in double J/ψ mass spectrum
- Triple J/ ψ in pp at 13 TeV (2023)
 - First observation
- Double Upsilon in pp at 13 TeV (2020)

Early analyses with Run 1 data

- Double Upsilon in pp at 8 TeV (2017) First observation
- Double J/ψ at 7 TeV (2014)

Zhen Hu

$J/\psi J/\psi$ in pPb

- MPI cross section increases with \sqrt{s} ; increased parton densities
 - Many measurements from UA2 to LHC
- DPS cross section can be written as σ_1

$$p_{\text{DPS}}^{\text{pPb}\to J/\psi J/\psi + X} = \left(\frac{1}{2}\right) \frac{\sigma_{\text{SPS}}^{\text{pPb}\to J/\psi + X} \sigma_{\text{SPS}}^{\text{pPb}\to J/\psi + X}}{\sigma_{\text{eff},\text{pA}}}$$

- Effective cross section $\sigma_{eff} \equiv$ (Interpretation transverse distance)²
- pPb data provide an independent tool to extract σ_{eff}

May 30, 2024, FPCP

- DPS is enhanced by a factor of 600 in pPb collisions as compared to pp

7

First observation of $J/\psi J/\psi$ in pPb

- pPb data sample collected at $\sqrt{s_{NN}} = 8.16$ TeV during 2016
 - Integrated luminosity: 174.56 nb⁻¹
- Channels considered
 - − J/ψ(→µµ)J/ψ(→µµ)
 - − J/ψ(→µµ)J/ψ(→ee)
- Signal Yield
 - $J/\psi(\rightarrow\mu\mu)J/\psi(\rightarrow\mu\mu)$: 8.5 ± 3.4
 - $J/\psi(\rightarrow \mu\mu)J/\psi(\rightarrow ee)$: 5.7 ± 4.0
- Significance is 4.9 sigma for the 4 muon channel (Likelihood ratio of the fits + asymptotic formula under Wilks theorem)
- 5.3σ (combination with Fischer Formalism)

J/ψ(→μμ)J/ψ(→ee)

$J/\psi J/\psi$ cross section in pPb at 8.16 TeV

CMS-PAS-HIN-23-013

 $\sigma(\text{pPb} \to J/\psi J/\psi + X) = N_{\text{sig}}/(\epsilon \,\mathcal{L}_{\text{int}} \,\mathcal{B}^2_{J/\psi \to u^+ u^-})$

Using $J/\psi(\rightarrow \mu\mu)J/\psi(\rightarrow \mu\mu)$ only, fiducial cross section

 $= 22.0 \pm 8.9$ (stat) ± 1.5 (syst) nb

Fiducial requirement		
For all muons	$p_{\mathrm{T}} > 3.4\mathrm{GeV}$	for $0 < \eta < 0.3$
	$p_{\mathrm{T}} > 3.3\mathrm{GeV}$	for $0.3 < \eta < 1.1$
	$p_{\rm T} > 5.5$ –2.0 $ \eta { m GeV}$	for $1.1 < \eta < 2.1$
	$p_{\mathrm{T}} > 1.3\mathrm{GeV}$	for $2.1 < \eta < 2.4$
For the two J/ ψ mesons	$p_{\rm T} > 6.5 { m GeV}$ and $ y < 2.4$	

Source of uncertainty	$\sigma(\text{pPb} \rightarrow J/\psi J/\psi + X)$		
J/ ψ meson signal shape	4.0%		
Dimuon continuum background shape	2.5%		
Luminosity	3.5%		
Branching fraction	1.1%		
Scale factors	1.3%		
Total	6.1%		

pPb 174.6 nb⁻¹ (8.16 TeV)

Separate DPS and SPS

- events (SPS) = 6.4 ± 4.2
- events (DPS) = 2.1 ± 2.4

Fiducial cross section: SPS: 16.5 ± 10.8 (stat) ± 0.1 (syst) nb DPS: 5.4 ± 6.2 (stat) ± 0.4 (syst) nb

Effective cross section from pPb

Neglecting parton correlations, factorization of double PDF in transverse and longitudinal components, $\sigma_{\rm eff}$ (pp) can be calculated as

$$\sigma_{\rm eff} = \frac{\sigma_{\rm eff,pA}}{A - \sigma_{\rm eff,pA} F_{\rm pA} / A}$$

A = 208, and F_{pA} = 29.5 mb⁻¹ from Glaube MC Model

$$\sigma_{\rm eff}(\rm pp) = 4.0^{+\infty}_{-1.5}\,\rm mb$$

$$\sigma_{eff}$$
 > 1.0 mb at 95% CL

Zhen Hu

May 30, 2024, FPCP

CMS, **V**s_{NN}=8.16 TeV, J/ψ+J/ψ **CMS**, **v**s=13 TeV, J/ψ+J/ψ+J/ψ Nat. Phys. **19** (2023) 338 CMS*, $\sqrt{s}=7$ TeV, $J/\psi+J/\psi$ Phys. Rept. 889 (2020) 1 ATLAS, $\sqrt{s}=8$ TeV, $J/\psi+J/\psi$ **D0**, √s=1.96 TeV, J/ψ+J/ψ **D0**^{*}, √s=1.96 TeV, J/ψ+Y ATLAS*, √s=7 TeV, W+J/ψ ATLAS*, √s=8 TeV, Z+J/ψ ATLAS*, $\sqrt{s}=8$ TeV, Z+b \rightarrow J/ ψ **D0**, \sqrt{s} =1.96 TeV, γ +b/c+2-jet **D0**, **√**s=1.96 TeV, γ+3-jet **D0**, √s=1.96 TeV, 2-γ+2-jet **D0**, √s=1.96 TeV, γ+3-jet **CDF**, √s=1.8 TeV, γ+3-jet **UA2**, √s=640 GeV, 4-jet **CDF**, √s=1.8 TeV, 4-jet ATLAS, √s=7 TeV, 4-jet JHEP 11 (2016) 110 CMS, √s=7 TeV, 4-jet CMS, √s=13 TeV, 4-jet JHEP 01 (2022) 177 CMS, √s=7 TeV, W+2-jet JHEP 03 (2014) 032 ATLAS, √s=7 TeV, W+2-jet CMS, √s=13 TeV, WW

Eur. Phys. J. C 77 (2017) 76 Phys. Rev. D 90 (2014) 111101 Phys. Rev. Lett. 117 (2016) 062001 Phys. Lett. B 781 (2018) 485 Phys. Rept. 889 (2020) 1 Nucl. Phys. B 916 (2017) 132 Phys. Rev. D 89 (2014) 072006 Phys. Rev. D 89 (2014) 072006 Phys. Rev. D 93 (2016) 052008 Phys. Rev. D 81 (2010) 052012 Phys. Rev. D 56 (1997) 3811 Phys. Lett. B 268 (1991) 145 Phys. Rev. D 47 (1993) 4857 Eur. Phys. J. C 76 (2016) 155 New J. Phys. 15 (2013) 033038 Phys. Rev. Lett. 131 (2023) 091803

$J/\psi J/\psi$ cross section in pp at 7 TeV

Total cross section, assuming unpolarized prompt J/ ψ J/ ψ pair production 1.49 ± 0.07 (stat.) ± 0.13 (syst.) nb

Different assumptions about the $J/\psi J/\psi$ polarization imply modifications to the cross section ranging from -31% to +27%.

11

$J/\psi J/\psi$ candidates in pp at 13 TeV

CÉRN

Zhen Hu

runs

May 30, 2024, FPCP

New structures in $J/\psi J/\psi$

New Structures in the $J/\psi J/\psi$ Mass Spectrum in Proton-Proton Collisions at $\sqrt{s} = 13 \, { m TeV}$

A. Hayrapetyan et al. (CMS Collaboration) Phys. Rev. Lett. 132, 111901 (2024) - Published 15 March 2024

Three structures, X(6900) and two new ones around 6.64 and 7.13 GeV, are seen in the $J/\psi J/\psi$ mass spectrum that are consistent with being part of a family of radial excitations. Show Abstract +

Phys. Rev. Lett. 132 (2024) 111901

- Fit with interf. among BW1, BW2, and BW3 describes data well
- Measured mass and width in the interference fit

		X(6600)	X(6900)	X(7100)	
Interference	<i>m</i> [MeV]	6638^{+43+16}_{-38-31}	6847^{+44+48}_{-28-20}	$7134\substack{+48+41\\-25-15}$	
	Γ [MeV]	$440\substack{+230+110\\-200-240}$	$191\substack{+66+25\\-49-17}$	97^{+40+29}_{-29-26}	
First observation				First evidence	Ś
en Hu Ma	ay 30, 2024, FP	СР		13	

First observation of triple J/ ψ in pp

Signal yield: $5^{+2.6}_{-1.9}$ events Significance > 5σ

Zhen Hu

 $\sigma(pp \rightarrow J/\psi J/\psi J/\psi X)$ = 272 ⁺¹⁴¹₋₁₀₄ (stat) ± 17 (syst) fb

Nature Physics 19 (2023) 338

May 30, 2024, FPCP

3 J/ ψ : SPS, DPS and TPS processes

- Expect dominance of DPS, with some TPS and very little SPS
 - SPS: ~6%, DPS: ~74%, TPS: ~20%

DPS effective cross section

$\sigma_{eff,DPS} = 2.7+1.4-1.0 \text{ (exp)}+1.5-1.0 \text{ (theo) mb}$

from di-quarkonium 3 - 10 mbInconsistent with jets,

photons and W bosons

10 - 20 mb

Two "clusters" of results -> σ_{eff} might not be universal

• 35.9 fb⁻¹ pp collision at 13 TeV, both |Y(1S)| < 2

 $\sigma_{\mathrm{fid}} = 79 \pm 11\,\mathrm{(stat)} \pm 6\,\mathrm{(syst)} \pm 3\,\,(\mathcal{B})\,\,\mathrm{pb}$,

Phys. Lett. B 808 (2020) 135578

NNU

- New trigger at CMS for Run 3, new possibilities!
 - $J/\psi + \psi(2S)$
 - $\psi(2S) + \psi(2S)$
 - $J/\psi + Upsilon$
 - $\psi(2S) + Upsilon$

