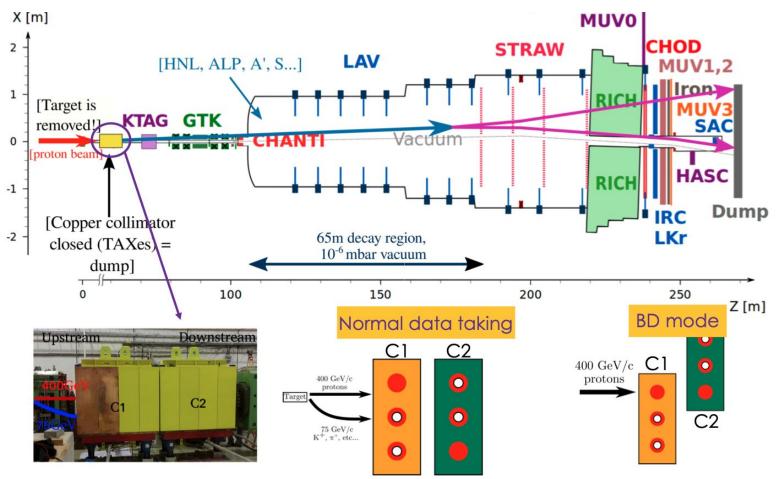

Istituto Nazionale di Fisica Nucleare

First NA62 search for long-lived new physics particle hadronic decays

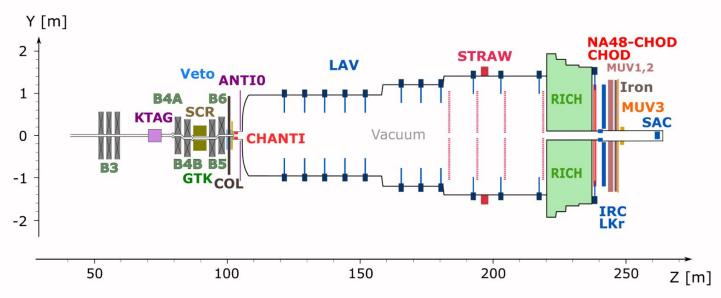
Gemma Tinti on behalf of the NA62 Collaboration

INFN Laboratori Nazionali di Frascati

FPCP 2024



The NA62 experiment at the SPS


NA62 @ CERN North Area, exploits a 400 GeV/c primary proton beam from the SPS. 2-3 x 10^{12} protons/spill in K mode, 5.6-6.6 x 10^{12} protons/spill in beam dump operation (~ x1.5 wrt K mode)

NA62 in beam dump mode

NA62 in beam dump mode

Sweeping

- B3 a triplet of magnetization-satured dipole magnets
- SCR a toroidally-magnetized iron collimator
- **B5 and B6** magnets

Upstream

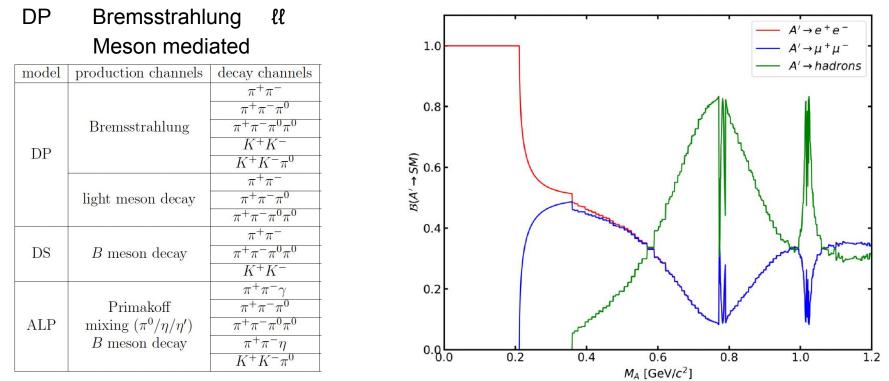
- **COL** cleaning collimator
- ANTIO scintillator hodoscope

Downstream

- STRAW spectrometer for momentum and direction measurements
- LKr, LAV, IRC and SAC photon veto system

CHOD for trigger timing

 $(1.43\pm0.28) \times 10^{17}$ Protons On Target (POTs) collected in 10 days in 2021


Search motivations

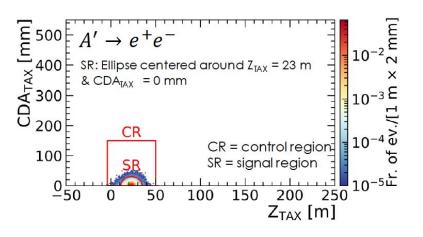
- Search for new physics (NP) at fixed target experiments is complementary to the energy frontier searches (LHC) and indirect searches
- Smaller masses (MeV-GeV) and lower couplings are accessible
- Dark sector portals typically probed:

NP particle	Туре	SM portal	PBC	Decay channels
dark photon (A'_{μ})	vector	$-(\epsilon/2 \cos \theta_W) F'_{\mu\nu} B^{\mu\nu}$	BC1-2	ℓℓ, 2π, 3π, 4π, 2К, 2Кπ
Dark Higgs (S)	scalar	(μS + λS²)H [†] H	BC4-5	ℓℓ, 2π, 4π, 2K
axion/ALP (a)	pseudoscalar	(C _{∨∨} /Λ)aV _{μν}	BC9,11 BC10	γγ, ℓℓ, 2πγ, 3π, 4π, 2πη, 2Κπ

New Physics searches

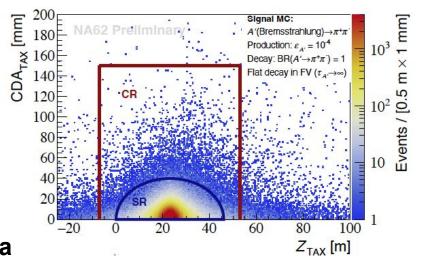
Numerous decay channels and production mechanism have been simulated:

36 combinations of production and decay channels studied for hadronic analysis only


Mass range < 600 MeV dominated by di-lepton decay 7

Analysis strategies

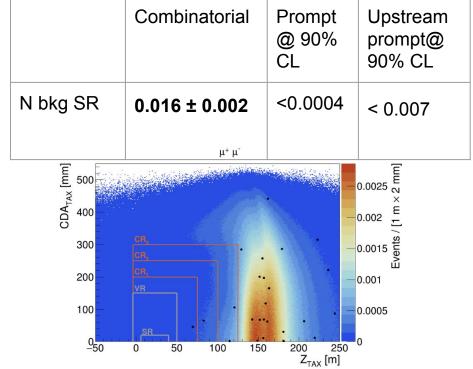
- Trigger lines: single/di-tracks in CHOD (from 2 in time tiles if di-track)
- 2 good quality opposite charge tracks in coincidence wrt trigger:
 - ℓ⁺ℓ⁻: µ/e cut based identification with calorimeters and muon detector


- No-in time activity from LAVs (and ANTI0)
- Decay vertex within the smart FV
- Primary extrapolated production vertex close to the proton TAX interaction point

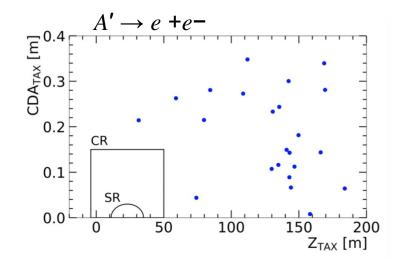
CDA – closest distance of approach between the beam direction at the TAX entrance and decay direction RMS*CDA*= \sim 7 mm ZTAX – longitudinal position, RMS*Z*= \sim 5.5 m

Analysis strategies

- Trigger lines: single/di-tracks in CHOD (from 2 in time tiles if di-track)
- 2 good quality opposite charge tracks in coincidence wrt trigger:
 - l^+l^- : μ /e cut based identification with calorimeters and muon detector
 - For h⁺h⁻ BDT particle ID (calo and MUV3), RICH used for tagging K
- For h⁺h⁻ analysis: reconstruction of extra γ, π⁰, η based on LKr cluster time and opening angle
- No-in time activity from LAVs and ANTI0
- Decay vertex within the smart FV
- Primary extrapolated production vertex close to the proton TAX interaction point

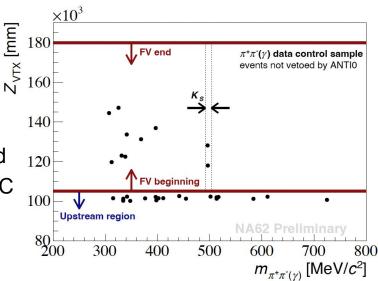

CDA – closest distance of approach between the beam direction at the TAX entrance and decay direction RMS*CDA*= ~7 mm ZTAX – longitudinal position,

Background determination


- **Combinatorial and neutrino-induced backgrounds**: negligible contributions in h^+h^- or e^+e^- , dominant for $\mu^+\mu^-$ (halo muons)
- Prompt background: inelastic interaction of halo muons can produce hadrons or e⁺e⁻
- Upstream background: formed by particles that are collected by the GTK achromat

Background determination for $A' \rightarrow \ell \ell$

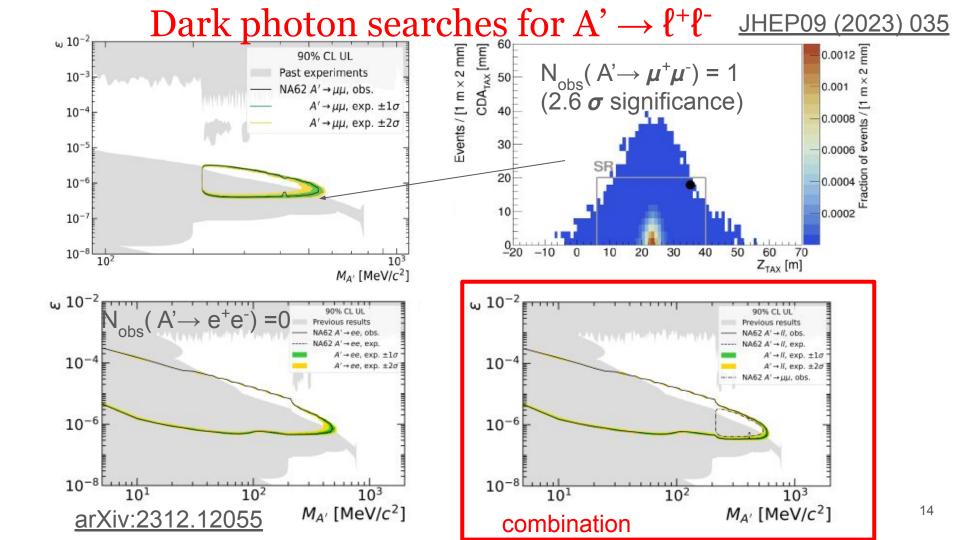
- Combinatorial and neutrino-induced backgrounds
- Prompt background
- Upstream background

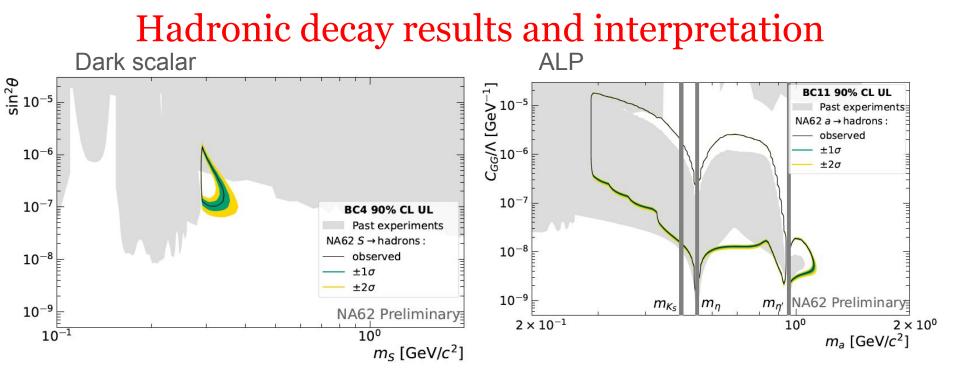

Nbkg SR = 0.0094 - 0.009 + 0.049 @ 90% CL

11

Background determination for $X \rightarrow hh$

- Combinatorial and neutrino-induced backgrounds
- Prompt background:
- Upstream background
 - 3 upstream background subcomponents for hh observed in the control sample in the $Z_{VTX} m_{\pi\pi}$ plane:
 - interactions in the region upstream the FV → vertex location and ANTI0 acceptance
 - $K_{s} \rightarrow \pi^{+}\pi^{-}$ candidates $\rightarrow m_{Ks} \pm 5.7$ MeV/c kept masked
 - $K^+ \rightarrow \pi^+ \pi^- \pi^-$ candidates, 6 of which identified as $\pi^+ \pi^-$ and 2 as $\pi^+ \pi^- \gamma \rightarrow$ use dedicated MC




Background determination for $X \rightarrow hh$

- Combinatorial and neutrino-induced backgrounds
- Prompt background:
- Upstream background
- For the h^+h^- analysis channels at 68% CL:

Channel	$N_{ m exp, CR} \pm \delta N_{ m exp, CR}$	$N_{ m exp,SR}\pm\delta N_{ m exp,SR}$
$\pi^+\pi^-$	0.013 ± 0.007	0.007 ± 0.005
$\pi^+\pi^-\gamma$	0.031 ± 0.016	0.007 ± 0.004
$\pi^+\pi^-\pi^0$	$(1.3^{+4.4}_{-1.0}) imes 10^{-7}$	$(1.2^{+4.3}_{-1.0}) \times 10^{-7}$
$\pi^+\pi^-\pi^0\pi^0$	$(1.6^{+7.6}_{-1.4}) \times 10^{-8}$	$(1.6^{+7.4}_{-1.4}) \times 10^{-8}$
$\pi^+\pi^-\eta$	$(7.3^{+27.0}_{-6.1}) imes 10^{-8}$	$(7.0^{+26.2}_{-5.8}) \times 10^{-8}$
K^+K^-	$(4.7^{+15.7}_{-3.9}) \times 10^{-7}$	$(4.6^{+15.2}_{-3.8}) \times 10^{-7}$
$K^+K^-\pi^0$	$(1.6^{+3.2}_{-1.2}) \times 10^{-9}$	$(1.5^{+3.1}_{-1.2}) \times 10^{-9}$

background-free hypothesis not only at $N_{POTs} = 1.4 \times 10^{17}$ but also in the future full **Run 2 dataset** of $N_{POTs} = 10^{18}$

- 0 events observed in CR and SR for all channels
- No standalone 90% CL exclusion for BC1 (dark photon).
- Combination of individual production and decay channels were made with ALPINIST JHEP 07 (2022) 094

Conclusions

- Blind searches for exotic particle decaying into ee, $\mu\mu$ and hadrons have been performed on the data collected in 2021 exploring new regions of parameter space accessible to the NA62 experiment in beam dump mode
- With (1.43 ± 0.28) x 10¹⁷ POTs 90% CL upper limits have been set, excluding new regions of the parameter space
- Searches for exotic particles decaying into semi-leptonic or di-gamma final states using data collected in 2021 are in progress
- Data-taking ongoing: a total of 10^{18} POTs in beam-dump mode expected by the LHC LS3 ((2.4 ± 0.5) x 10^{17} POTs already collected in 2023) with interesting perspectives on dark photons, ALPs, dark scalars and HNLs.

Spare slides

Search for Dark Photons

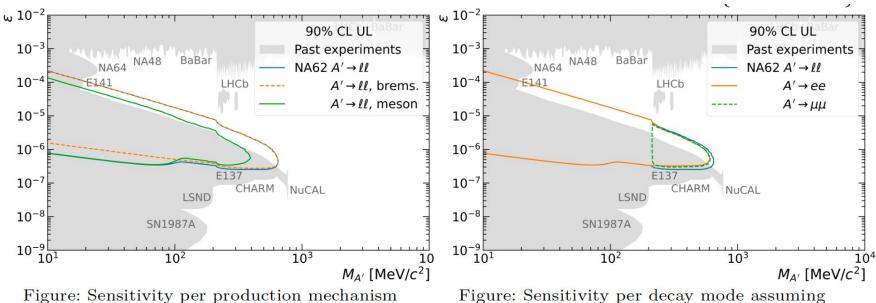
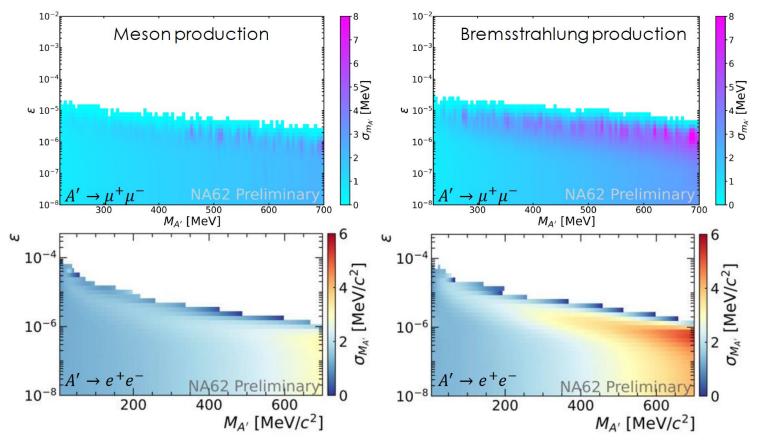
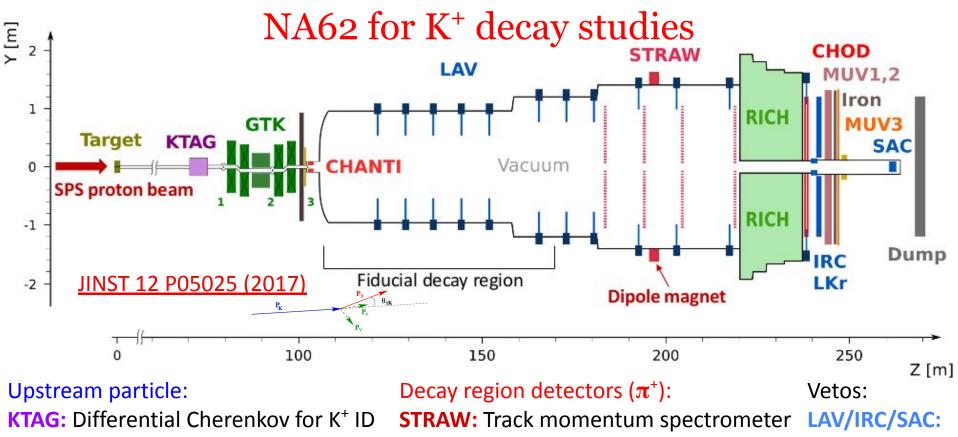




Figure: Sensitivity per production mechanism assuming 0 observed events in 1.4×10^{17} POT.

Figure: Sensitivity per decay mode assuming 0 observed events in 1.4×10^{17} POT.

Invariant mass resolution me

- **GTK:** Si pixel tracker
- **CHANTI:** Anti-counter for inelastic interactions

Decay region detectors (π^+) :Vetos:STRAW: Track momentum spectrometerLAV/IRC/SAC:CHOD: Scintillator hodoscopephotonsRICH: For $\pi/\mu/e$ IDMUV3:LKR/MUV1/2: Calorimetric systems20