Quantum decoherence and CP violation at Protvino to ORCA

Chinmay Bera

Department of Physics, École Centrale School of Engineering Mahindra University, Hyderabad, Telangana, 500043, India

> Working with Dr. Deepthi K N

May 27, 2024

イロト イヨト イヨト イ

2 Decoherence

- 3 Current bounds on decoherence parameters
- 4 Simulation details
- **5** Analysis and results
- 6 Summary and conclusions

・ロト ・ 理ト ・ ヨト ・ ヨト …

E

Neutrino oscillation

Neutrino flavor (ν_α) oscillations are generated by the quantum interference of neutrino mass states (ν_j),

$$|\nu_{\alpha}\rangle = \sum_{j} U_{\alpha j} |\nu_{j}\rangle$$
.

- Coherence between ν_j is essential for neutrino oscillations.
- Neutrino system behaves as a closed system.

イロト 不得下 イラト イラト 二日

• Time evolution of ρ represented by Liouville-Von Neumann equation

$$\frac{d\rho(t)}{dt} = -i[H,\rho(t)] \; .$$

• $P_{\alpha\beta}(t) = Tr[\rho_{\alpha}(t)\rho_{\beta}(0)]$.

Motivation

- $P_{\alpha\beta}(t \approx L) = P_{\alpha\beta}(\Delta m_{21}^2, |\Delta m_{31}^2|, \theta_{12}, \theta_{13}, \theta_{23}, \delta_{\rm CP}; E, L, V(x))$.
- Significant opportunity to probe new physics (NP) phenomenon with upcoming high-precision neutrino oscillation experiments.
- One such interesting phenomenon is the environmentally induced decoherence.
- This effect arises in the oscillation probabilities through the damping term $e^{-\Gamma L}$.

Fig 1. Protvino to ORCA.

Decoherence

• Neutrino system interacts with the stochastic environment.

•
$$\frac{d\tilde{\rho}_m(t)}{dt} = -i \left[H, \tilde{\rho}_m(t)\right] + \mathcal{D}\left[\tilde{\rho}_m(t)\right]$$
.

• Assumptions:

- (a) complete positivity,
- (b) trace preserving conditions,
- (c) increasing von Neumann

entropy,

(d) average energy conservation of the system.

Fig 2. Neutrino system as an open quantum system.

・ロト ・四ト ・ヨト ・ヨト

Oscillation probability in presence of decoherence

•
$$P_{\alpha\beta}(t) = Tr[\tilde{\rho}_{\alpha}(t)\tilde{\rho}_{\beta}(0)]$$
.
• $P_{\alpha\beta}(L) = \delta_{\alpha\beta} - 2\sum_{j>k} Re\left(\tilde{U}_{\beta j}\tilde{U}^*_{\alpha j}\tilde{U}_{\alpha k}\tilde{V}^*_{\beta k}\right)$
 $+ 2\sum_{j>k} Re\left(\tilde{U}_{\beta j}\tilde{U}^*_{\alpha j}\tilde{U}_{\alpha k}\tilde{U}^*_{\beta k}\right)\exp(-\Gamma_{jk}L)\cos\left(\frac{\tilde{\Delta}m_{jk}^2}{2E}L\right)$
 $+ 2\sum_{j>k} Im\left(\tilde{U}_{\beta j}\tilde{U}^*_{\alpha j}\tilde{U}_{\alpha k}\tilde{U}^*_{\beta k}\right)\exp(-\Gamma_{jk}L)\sin\left(\frac{\tilde{\Delta}m_{jk}^2}{2E}L\right)$.

- Damping of interference terms by a factor $e^{-\Gamma L}$ in the oscillation probability.
- Energy dependency on Γ :

$$\Gamma_{jk}(E_{\nu}) = \Gamma_0 \left(\frac{E_{\nu}}{GeV}\right)^n ; \ n = 0, \pm 1, \pm 2 .$$

6/26

Current upper bounds on decoherence parameters

▲ロト ▲課 ト ▲語 ト ▲語 ト ― 語 ― 釣�()~

Bounds on Γ by IceCube experiments

Article

https://doi.org/10.1038/s41567-024-02436-w

・ロト ・ 母 ト ・ ヨ ト ・ ヨ ト

Search for decoherence from quantum gravity with atmospheric neutrinos

Received: 25 July 2023	The IceCube Collaboration*				
Accepted: 8 February 2024					
Published online: 26 March 2024	Neutrino oscillations at the highest energies and longest baselines can				
Check for updates	be used to study the structure of spacetime and test the fundamental principles of quantum mechanics. If the metric of spacetime has a quantum mechanical description, its fluctuations at the Planck scale are expected to introduce non-unitary effects that are inconsistent with the standard unitary time evolution of quantum mechanics. Neutrinos interacting with such fluctuations would lose their quantum coherence, deviating from the expected oscillatory flavour composition at long distances and high energies. Here we use atmospheric neutrinos detected by the leccube South Pole Neutrino Observatory in the energy range of 0.5–10.0 TeV to search for coherence loss in neutrino propagation. We find no evidence of anomalous neutrino decoherence and determine limits on neutrino–quantum gravity interactions. The constraint on the effective decoherence strength parameter within an energy-independent decoherence model improves				
	on previous limits by a factor of 30. For decoherence effects scaling as <i>E</i> ² , our limits are advanced by more than six orders of magnitude beyond past measurements compared with the state of the art.				

Bounds on Γ by IceCube experiments

Article

https://doi.org/10.1038/s41567-024-02436-w

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・

Search for decoherence from quantum gravity with atmospheric neutrinos

Received: 25 July 2023

The IceCube Collaboration*

Table 1 | Summary of constraints on decoherence models obtained in this analysis

n	Phase perturbation Γ_{90}	State selection Γ_{90}
0	1.18×10 ⁻¹⁵ eV	1.17×10 ⁻¹⁵ eV
1	6.89×10 ⁻¹⁶ eV	6.67×10 ⁻¹⁶ eV
2	9.80×10 ⁻¹⁸ eV	9.48×10 ⁻¹⁸ eV
3	1.58×10 ⁻¹⁹ eV	1.77×10 ⁻¹⁹ eV

The 90% CL upper limits on decoherence strength parameter Γ_0 (which we name Γ_{90}) are reported for each power-law index *n* with power-law pivot energy E_0 =1TeV in the state selection and phase perturbation models.

Bounds by reactor and accelerator experiments

Neutrino oscillation bounds on quantum decoherence

Valentina De Romeri,^a Carlo Giunti,^b Thomas Stuttard^a and Christoph A. Ternes^{b,d}

 ^aInstituto de Física Corpuscular (CSIC-Universitat de València), Parc Científic UV C/ Catedrático José Beltrán, 2 E-46980 Paterna (Valencia) - Spain ^bIstituto Nazionale di Física Nucleare (INFN), Sezione di Torino, Via P. Giuria 1, I-10125 Torino, Italy
 ^cNiels Bohr Institute, University of Copenhagen, DK-2100 Copenhagen, Denmark
 ^dDipartimento di Física, Università di Torino, via P. Giuria 1, I-10125 Torino, Italy
 E-mail: deromeri@ific.uv.es, carlo.giunti@to.infn.it,

thomas.stuttard@nbi.ku.dk, ternes@to.infn.it

ABSTRACT: We consider quantum-decoherence effects in neutrino oscillation data. Working in the open quantum system framework we adopt a phenomenological approach that allows to parameterize the energy dependence of the decoherence effects. We consider several phenomenological models. We analyze data from the reactor experiments RENO, Daya Bay and KamLAND and from the accelerator experiments NOvA, MINOS/MINOS+ and T2X. We obtain updated constraints on the decoherence parameters quantifying the strength of damping effects, which can be as low as $\Gamma_{ij} \lesssim 8 \times 10^{-27}$ GeV at 90% confidence level in some cases. We also present sensitivities for the future facilities DUNE and JUNO.

・ロト ・雪ト ・ヨト ・ヨト

Bounds by reactor and accelerator experiments

Neutrino oscillation bounds on quantum decoherence

Valentina De Romeri,^a Carlo Giunti,^b Thomas Stuttard^c and Christoph A. Ternes^{b,d}

^aInstituto de Física Corpuscular (CSIC-Universitat de València),

Parc Científic UV C/ Catedrático José Beltrán, 2 E-46980 Paterna (Valencia) - Spain

^bIstituto Nazionale di Fisica Nucleare (INFN), Sezione di Torino,

Decoherence Model	n = -2	$n = -1$	$n = 0$	n = +1	n = +2
A: $\Gamma_{21} = \Gamma_{31} = \Gamma_{32}$	$ 7.8 \times 10^{-27} \text{ (KL)}$	$ 1.8 \times 10^{-24} (l)$	KL) $ 5.1 \times 10^{-24} $	$(M) 3.0 \times 10^{-25}$	(M) $ 1.3 \times 10^{-26}$ (M)
B: $\Gamma_{21} = \Gamma_{31}, \ \Gamma_{32} = 0$	7.9×10^{-27} (KL)	1.8×10^{-24} (1	KL) 2.4×10^{-23}	(N) 2.3×10^{-24}	(M) $ 1.0 \times 10^{-25}$ (M)
C: $\Gamma_{21} = \Gamma_{32}, \ \Gamma_{31} = 0$	7.9×10^{-27} (KL)	1.8×10^{-24} (1	KL) 9.4×10^{-24}	(M) 5.7 × 10 ⁻²⁵	(M) 2.5×10^{-26} (M)
D: $\Gamma_{31} = \Gamma_{32}, \ \Gamma_{21} = 0$	6.9×10^{-25} (R)	2.1×10^{-23} (T	(2K) 5.6 × 10 ⁻²⁴	(M) 3.3×10^{-25}	(M) $ 1.5 \times 10^{-26}$ (M)
E: Γ ₂₁ , Γ ₃₁ = Γ ₃₂ = 0	7.9×10^{-27} (KL)	1.8×10^{-24} (1	KL) 3.2×10^{-23}	(M) 2.2×10^{-24}	(M) 1.0×10^{-25} (M)
F: $\Gamma_{31}, \Gamma_{21} = \Gamma_{32} = 0$	1.0×10^{-24} (R)	1.9×10^{-23} (T	$(22K)$ (2.3×10^{-23})	(N) 2.2×10^{-24}	(M) $ 1.0 \times 10^{-25}$ (M)
$G{:}\;\Gamma_{32},\Gamma_{21}=\Gamma_{31}=0$	$ 4.0 \times 10^{-23} \text{ (T2K)} $	6.5×10^{-23} (T	$(2K)$ $ 1.1 \times 10^{-23} $	(M) 6.6 × 10 ⁻²⁵	(M) 3.0 × 10 ⁻²⁶ (M)

TABLE III: Summary of results: each column shows the most constraining upper limit on Γ_{ij} , in GeV, for each model (A to G) and value of n. We also clarify, within parenthesis, which experiment sets the bound (KL = KamLAND, R = RENO, M = MINOS/MINOS+, N = NOvA).

イロト イポト イヨト 「日

JHEP09

Bounds on Γ by MINOS and T2K experiments

Quantum decoherence and relaxation in long-baseline neutrino data

A.L.G. Gomes,^a R.A. Gomes ¹ and O.L.G. Peres ¹

^aInstituto de Física, Universidade Federal de Goiás, 74690-900, Goiána, GO, Brazil ^bInstituto de Física Gleb Wataghin, UNICAMP, 13083-859, Campinas, SP, Brazil

E-mail: abnergomes@ufg.br, ragomes@ufg.br, orlandop@unicamp.br

ABSTRACT: We investigate the effect of quantum decoherence and relaxation in neutrino oscillations using MINOS and T2K data. The formalism of open quantum systems is used to describe the interaction of a neutrino system with the environment, where the strength of the interaction is regulated by a decoherence parameter Γ . We assume an energy dependence parameterized by $\Gamma = \gamma_0 (E/\text{GeV})^n$, with n = -2, 0, +2, and consider three different scenarios, allowing the investigation of the effect of relaxation and of constraining the solar and atmospheric sectors to the same decoherence parameter. The MINOS and T2K data present a complementary behavior, with regard to our theoretical model, resulting in a better sensitivity for n = +2 and n = -2, respectively. We perform a combined analyses of both experimental data, which also include a reactor constraint on $\sin^2 \theta_{13}$, and observe an independence of the results to the scenarios allowing or not relaxation. We improve some previous bounds on γ_0 and outline which data (solar, reactor, atmospheric, long-baseline) determine the more stringent constraints for different scenarios and energy dependencies.

A D K A D K A D K A D K

Bounds on Γ by MINOS and T2K experiments

Quantum decoherence and relaxation in long-baseline neutrino data

A.L.G. Gomes,^a R.A. Gomes ⁰^a and O.L.G. Peres ⁰^b

^aInstituto de Física, Universidade Federal de Goiás, 74690-900, Goiânia, GO, Brazil ^bInstituto de Física Gleb Wataohin, UNICAMP.

			15.1
	n = -2	n = 0	n = 2
MINOS (this work)			
Case 1 ($\Gamma_{31} = \Gamma_{32} = \Gamma_{21}$, with relaxation)	$(0.33 - 37.0) \times 10^{-23}$	6.8×10^{-23}	1.7×10^{-25}
Case 2 ($\Gamma_{31} = \Gamma_{32} = \Gamma_{21}$, no relaxation)	30.0×10^{-23}	6.5×10^{-23}	2.4×10^{-25}
Case 3 ($\Gamma_{31} = \Gamma_{32}$, $\Gamma_{21} = 0$, no relaxation)	19.0×10^{-23}	5.9×10^{-23}	2.5×10^{-25}
T2K (this work)			
Case 1	2.8×10^{-23}	6.2×10^{-23}	3.1×10^{-23}
Case 2	2.9×10^{-23}	5.2×10^{-23}	3.3×10^{-23}
Case 3	1.7×10^{-23}	3.9×10^{-23}	4.1×10^{-23}
MINOS+T2K (this work)			
Case 1	2.9×10^{-23}	6.6×10^{-23}	2.3×10^{-25}
Case 2	3.4×10^{-23}	6.1×10^{-23}	2.9×10^{-25}
Case 3	2.0×10^{-23}	5.0×10^{-23}	3.3×10^{-25}

JHEP10 N 5

Our work: arXiv:2405.03286

イロト イポト イヨト イヨト 二日

590

14/26

Phenomenological models

- Case 1: $\Gamma_{21} = \Gamma_{31} = \Gamma_{32} \neq 0$
- Case 2: $\Gamma_{21} = \Gamma_{31} , \ \Gamma_{32} = 0$
- Case 3: $\Gamma_{21} = \Gamma_{32} , \ \Gamma_{31} = 0$
- Case 4: $\Gamma_{31} = \Gamma_{32} , \ \Gamma_{21} = 0$

$$\Gamma_{jk}(E_{\nu}) = \Gamma_0 \left(\frac{E_{\nu}}{GeV}\right)^n ; \ n = 0, \pm 1, \pm 2 .$$

Objectives: To study

- \bullet the effects of Γ on different oscillation channels.
- the bounds on decoherence parameters in P2O considering $\Gamma \propto E_{\nu}^{n}$.
- MH and CPV sensitivity considering 3σ value of Γ .

◆□▶ ◆□▶ ◆豆▶ ◆豆▶ ・豆 ・ のへ⊙

Simulation details

Baseline Exposure Beam power Run time Detector mass Matter density $\begin{array}{c} 2595 \ \mathrm{km} \\ 0.8 \times 10^{20} \ \mathrm{POT/year} \\ 90 \ \mathrm{kW} \ \mathrm{(modest)} \ \mathrm{and} \ 450 \ \mathrm{kW} \ \mathrm{(upgradable)} \\ 6 \ \mathrm{years} \ (3(\nu) + 3(\bar{\nu})) \\ 8 \ \mathrm{Mton} \ \mathrm{(Water \ Cherenkov)} \\ 3.25 \ gm/cm^3 \end{array}$

Fig 3. Events rate considering standard interaction in the presence of earth matter. [1] Eur. Phys. J. C (2019) 79: 758

Oscillation probabilities

Fig 4. The left (right) plot in the upper panel represents ν_e appearance (ν_{μ} disappearance) probability and in the lower panel corresponding anti-neutrino probability. We consider a representative case $\Gamma_{21} = \Gamma_{31} = \Gamma_{32} = 2.3 \times 10^{-23} \text{ GeV}$.

Analysis

- We incorporated a new oscillation probability engine into GLoBES [2,3] by taking into account the effect of decoherence on neutrino propagation.
- $\Delta \chi_{\Gamma}^2 = \chi^2(\Gamma(true) = 0, \Gamma(test) \neq 0)$. Marginalized over θ_{23} and δ_{CP} , $(\Delta m_{31}^2)_{NH}$.
- $\Delta \chi^2_{MH} = \chi^2_{true}(\Gamma \neq 0, \Delta m^2_{31} > 0) \chi^2_{test}(\Gamma = 0, \Delta m^2_{31} < 0)$. Marginalized over θ_{23} and δ_{CP} .
- $\Delta \chi_0^2 = \chi_{true}^2 (\delta_{CP}(true), \Gamma \neq 0) \chi_{test}^2 (\delta_{CP} = 0, \Gamma = 0) ,$ $\Delta \chi_\pi^2 = \chi_{true}^2 (\delta_{CP}(true), \Gamma \neq 0) - \chi_{test}^2 (\delta_{CP} = \pi, \Gamma = 0) ,$ $\Delta \chi_{CPV}^2 = min[\Delta \chi_0^2, \Delta \chi_\pi^2] .$ Marginalized over θ_{23} , $(\Delta m_{31}^2)_{NH}$.

[2] Comput. Phys. Commun. 167 (2005) 195 , [3] Comput. Phys. Commun.
 177 (2007) 432–438 .

▲ロト ▲圖 ▶ ▲ 画 ▶ ▲ 画 ■ のへの

Results

Fig 5. Case 1: $\Gamma_{21} = \Gamma_{31} = \Gamma_{32} \neq 0$. Upper and lower panel are the results of 90 kW and 450 kW beam respectively.

Contd...

Fig 6. Case 2: $\Gamma_{21}=\Gamma_{31}$, $\Gamma_{32}=0.$ Upper and lower panel are the results of 90 kW and 450 kW beam respectively.

		90 kW		450 kW	
		Case 1	Case 2	Case1	Case 2
n = -2	90%	8.06×10^{-23}	6.0×10^{-23}	$6.4 imes 10^{-23}$	3.9×10^{-23}
	3σ	1.15×10^{-22}	1.11×10^{-22}	9.0×10^{-23}	7.6×10^{-23}
n = -1	90%	1.8×10^{-23}	1.36×10^{-23}	1.4×10^{-23}	8.5×10^{-24}
	3σ	2.55×10^{-23}	2.46×10^{-23}	2.1×10^{-23}	1.75×10^{-23}
n = 0	90%	3.76×10^{-24}	2.76×10^{-24}	3.1×10^{-24}	1.89×10^{-24}
	3σ	5.3×10^{-24}	5.18×10^{-24}	4.2×10^{-24}	4.0×10^{-24}
n = 1	90%	7.4×10^{-25}	5.4×10^{-25}	6.2×10^{-25}	3.6×10^{-25}
	3σ	1.04×10^{-24}	1.02×10^{-24}	8.5×10^{-25}	7.7×10^{-25}
n=2	90%	1.24×10^{-25}	9.07×10^{-26}	7.8×10^{-26}	5.87×10^{-26}
	3σ	1.79×10^{-25}	1.87×10^{-25}	$1.5 imes 10^{-25}$	1.4×10^{-25}

Table 1: Upper bounds on Γ_0 (GeV) obtained for different power law dependencies.

イロト イポト イヨト イヨト 二日

- The upper bounds on Γ are comparatively stronger for $n \ge 0$.
- **2** Similar conclusion can be drawn for upgraded 450 kW beam.
- Case-2 ($\Gamma_{21} = \Gamma_{31}$, $\Gamma_{32} = 0$) poses strong constraints for n = 0on $\Gamma \leq 2.76 \times 10^{-24}$ GeV for P2O and $\Gamma \leq 1.89 \times 10^{-24}$ GeV for P2O-upgrade.
- MH sensitivity does not vary significantly w.r.t SM.
- In the presence of decoherence, CP conserving values ($\delta_{CP} = 0, \pm \pi$) also show nonzero δ_{CP}

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三 のへで

Thank you

chin may 20 pphy 014 @mahindra university. edu. in

Chinmay Bera Quantum decoherence at P2O 23/26

イロト イポト イモト イモト 一日

Peak explanation

$$\begin{split} P_{\nu_{\alpha}\nu_{\alpha'}} = & \delta_{\alpha\alpha'} - 2\sum_{j>k} Re(\tilde{U}_{\alpha'j}\tilde{U}^*_{\alpha j}\tilde{U}_{\alpha k}\tilde{U}^*_{\alpha' k}) \\ &+ 2\sum_{j>k} Re(\tilde{U}_{\alpha'j}\tilde{U}^*_{\alpha j}\tilde{U}_{\alpha k}\tilde{U}^*_{\alpha' k})e^{-\Gamma_{jk}x}\cos\left(\frac{\tilde{\Delta}_{jk}}{2E}x\right) \\ &+ 2\sum_{j>k} Im(\tilde{U}_{\alpha'j}\tilde{U}^*_{\alpha j}\tilde{U}_{\alpha k}\tilde{U}^*_{\alpha' k})e^{-\Gamma_{jk}x}\sin\left(\frac{\tilde{\Delta}_{jk}}{2E}x\right) \end{split}$$

Chinmay Bera Quantum decoherence at P2O 24/26

▲□▶ ▲圖▶ ▲圖▶ ▲圖▶

1

Cont...

$$C_{\mu e} = -2\sum_{i < j} \operatorname{Re}\left[\tilde{U}_{\mu i}^* \tilde{U}_{e i} \tilde{U}_{\mu j} \tilde{U}_{e j}^*\right]$$

$$I_{\mu e} = 2 \sum_{i < j} \operatorname{Re} \left[\tilde{U}_{\mu i}^* \tilde{U}_{e i} \tilde{U}_{\mu j} \tilde{U}_{e j}^* \right] \cos \tilde{\Delta}_{i j}$$
$$-2 \sum_{i < j} \operatorname{Im} \left[\tilde{U}_{\mu i}^* \tilde{U}_{e i} \tilde{U}_{\mu j} \tilde{U}_{e j}^* \right] \sin \tilde{\Delta}_{i j}$$

https://doi.org/10.1103/PhysRevD.100.055023

Events rate

• NH, $\delta_{CP} = \pi/2$; 90 kW beam power.

Signal events	ν_e	$ u_{\mu}$	$\bar{\nu}_e$	$ar{ u}_{\mu}$
$SM \ (\Gamma = 0)$	2115	4746	160	1473
$\Gamma = 1.79 \times 10^{-25} \text{ GeV} (n = 2)$	2390	5160	154	1623
$\Gamma = 1.15 \times 10^{-22} \text{ GeV} (n = -2)$	2139	5039	159	1567

Bkg in ν_e app channel	$ u_{\mu} $	NC	$ u_{ au}$
$SM \ (\Gamma = 0)$	2362	1190	876
$\Gamma = 1.79 \times 10^{-25} \text{ GeV} (n = 2)$	2596	1190	852
$\Gamma = 1.15 \times 10^{-22} \text{ GeV} (n = -2)$	2370	1190	868

・ロト ・部ト ・ヨト ・ヨト ・ヨ