HEAVY NEW PHYSICS IN $b \rightarrow s \nu \nu$

W. Altmannshofer, S.A.G, K. Toner arXiv: 2406.xxxxx

Aditya Gadam

Rare b-decays in $b \to s \nu \nu$: Motivation

Theoretical

- GIM and CKM suppression makes these decays of *b* quarks rare
- Sensitive probes of New Physics (NP)
- Cleaner theoretical predictions than for $b \rightarrow s \ell^+ \ell^-$
- Complementary NP information to the above and clean ratios of branching fractions

Experimental

- Good missing energy detection
- \circ Future e^+e^- colldiers = excellent probe: $10^{12} Z$ events at the Z pole¹
	- Currently only weakly probed through meson decays
	- No polarization chiral information is yet to be probed
	- Polarization can be measured passes to fermionic children

The Framework: $\Lambda_b \to \Lambda \nu \bar{\nu}$

◦ Compute double differential decay rate of the Standard Model process

- Polarized initial state (sample fraction)
- \circ Correlate initial spin and Λ momentum

$$
\circ \text{ Produce observables in different frames} \quad \text{dBR}(\Lambda_b \to \Lambda \nu \bar{\nu}) \quad \text{dBR}(\Lambda_b \to \Lambda \nu \bar{\nu}) \quad \text{dBR}(\Lambda_b \to \Lambda \nu \bar{\nu}) \quad \text{B}
$$

$$
\frac{d\text{Dn}(N_b \to N \nu)}{dq^2 d\cos\theta_\Lambda} = \frac{d\text{Dn}(N_b \to N \nu)}{dq^2} \left(\frac{1}{2} + A_{\text{FB}}^{\dagger} \cos\theta_\Lambda\right)
$$

◦ Propagate input uncertainties: prediction uncertainty (simulation)

◦ Compute an NP double differential decay rate:

$$
\mathcal{H}_{\text{eff}} = -\frac{4G_F}{\sqrt{2}} \frac{\alpha}{4\pi} V_{ts}^* V_{tb} 2 \Big(C_L (\bar{s} \gamma^\mu P_L b)(\bar{\nu} \gamma_\mu P_L \nu) + C_R (\bar{s} \gamma^\mu P_R b)(\bar{\nu} \gamma_\mu P_L \nu) \Big) + \text{h.c}
$$

 \circ Evaluate the bound on $C_{R,L}$

The Particles were Framed

Lab Frame

- \circ Observed: \hat{E}_{Λ} distribution
- \circ Assumption: Initial Λ_b energy reconstruction
- \circ Differential width dependence on E_{Λ}
	- Non-trivial kinematic limits
- Obtain observable distributions dependent on initial energy distribution

Λ_b **Rest Frame**

- $\,\circ\,$ Observed: Channel Decay Rate, $A_{\rm FB}$
- \circ Assumption: \hat{p}_{Λ_b} axis reconstruction
- Momentum gives us the spin quantization axis for A_{FB}
- Reconstruction uncertainty and propagation (hadronics enter here)
- Observable distributions are calculable without hadronic simulation

$$
\langle \Lambda | \bar{s} \gamma^{\mu} b | \Lambda_b \rangle = \bar{u}_{\Lambda} \left[f_t^V(q^2) (m_{\Lambda_b} - m_{\Lambda}) \frac{q^{\mu}}{q^2} + f_{\perp}^V(q^2) \left(\gamma^{\mu} - \frac{2(m_{\Lambda} P^{\mu} + m_{\Lambda_b} p^{\mu})}{(m_{\Lambda_b} + m_{\Lambda})^2 - q^2} \right) \right. \\
\left. + f_0^V(q^2) \frac{m_{\Lambda_b} + m_{\Lambda}}{(m_{\Lambda_b} + m_{\Lambda})^2 - q^2} \left(P^{\mu} + p^{\mu} - (m_{\Lambda_b}^2 - m_{\Lambda}^2) \frac{q^{\mu}}{q^2} \right) \right] u_{\Lambda_b} \right. \\
\langle \Lambda | \bar{s} \gamma^{\mu} \gamma_5 b | \Lambda_b \rangle = -\bar{u}_{\Lambda} \gamma_5 \left[f_t^A(q^2) (m_{\Lambda_b} + m_{\Lambda}) \frac{q^{\mu}}{q^2} + f_{\perp}^A(q^2) \left(\gamma^{\mu} + \frac{2(m_{\Lambda} P^{\mu} - m_{\Lambda_b} p^{\mu})}{(m_{\Lambda_b} - m_{\Lambda})^2 - q^2} \right) \right. \\
\left. + f_0^A(q^2) \frac{m_{\Lambda_b} - m_{\Lambda}}{(m_{\Lambda_b} - m_{\Lambda})^2 - q^2} \left(P^{\mu} + p^{\mu} - (m_{\Lambda_b}^2 - m_{\Lambda}^2) \frac{q^{\mu}}{q^2} \right) \right] u_{\Lambda_b} \right]
$$

Form Factors

- \circ Hadronic M: non-perturbative
- \circ Form factors¹ approximate $\mathcal M$
- Depends on di-neutrino mass $\sigma_{\rm e}\, q^2 = \left(p_{\Lambda_b} - p_{\Lambda}\right)^2\, ,$
- Only vector and axial elements used
	- Couples to neutrinos scalar and tensor elements ignored

Uncertainties in the SM Prediction $BR(\Lambda_b \to \Lambda \nu \bar{\nu})_{\rm SM} = (7.71 \pm 1.06) \times 10^{-6}$

- Form Factors
	- Second order expansion
- CKM Uncertainties
	- \circ Dominated by V_{ts}
	- Unitarity used to obtain tree-level determinations
- Top mass, higher order QCD and EW enter through the SM value of C_L^{ν}
- Uncertainty in the lifetime propagates into the branching fraction

1Brod, Gorbahn, Stamou: 1009.0947

New Physics Sensitivity

- Interpretation:
	- Green: Branching Ratio Constraints
	- \circ Purple: $A_{\rm FB}$ Constraints
	- Red: Joint Exclusion
	- 。 $\mathcal{P}_{\Lambda_b}=-0.4$
- Central value is SM Physics
- \circ A_{FB} and branching ratio offer great complementarity

Conclusion Outlook

- \circ Future e^+e^- colliders provide excellent prospects for NP detection via $\Lambda_b \to \Lambda \nu \bar{\nu}$
- Polarization measurements offer insight into chiral structure
- This information can be probed in the lab frame as well
- Currently unprobed: a trove of information!

- Initial energy distribution: Pythia
- Background analysis \circ Σ_b , etc.
- \circ *Dark* final states masquerade as $\not\!\!E$
	- Effect on observables DM structure
	- Interesting mass/coupling enhancements (due to FFs as well)
- Meson decays: current/future data $\phi: B \to K^{(*)} \nu \nu, B_s \to \phi \nu \nu$

