Exploring $b \rightarrow c\tau v$ mediated baryonic decay modes in SMEFT framework

Dhiren Panda^{1,*} and Rukmani Mohanta^{2,**}

¹School of Physics ²University of Hyderabad ³Telangana, India

> **Abstract.** Motivated by the interplay between the LEFT and SMEFT operators at the electroweak scale, we study the interrelation among the *B* decays mediated by $b \rightarrow c\ell \nu_{\ell}$, $b \rightarrow s\nu_{\ell}\nu_{\ell}$ and $b \rightarrow s\ell\ell$ ($\ell = e, \mu, \tau$) quark level transitions in the context of six-dimensional SMEFT operators such as $Q_{\ell q}^{(3)}$, $Q_{\ell edq}$, $Q_{\ell equ}^{(1)}$, $Q_{\ell equ}^{(3)}$, and $Q_{\phi q}^{(3)}$. We constrain the new physics parameter space through a comprehensive global fit incorporating the observables $R_D, R_{D^*}, P_{\tau}(D^*), F_L(D^*), R_\Lambda,$ $\mathcal{B}(B_0 \rightarrow K^* \nu \nu), \mathcal{B}(B \rightarrow K^+ \nu \nu), \mathcal{B}(B \rightarrow K^+ \tau^+ \tau^-)$ and $\mathcal{B}(B_s \rightarrow \tau^+ \tau^-)$. We then investigate the sensitivity of new physics in the semi-leptonic decay modes of b-baryons, specifically $\Xi_b \rightarrow \Xi_c \tau^- \bar{\nu}_{\tau}$. We further explore the impact of the new physics couplings on several observables such as the differential branching ratio (DBR), forward-backward asymmetry (A_{FB}^{τ}) the lepton flavor non-universality (R_{Ξ_n}) for this processes.

1 Introduction

Several discrepancies have been observed in recent times in the decay modes mediated through $b \rightarrow c\ell v$ transitions. A significant deviation of the branching fraction of $B \rightarrow c\ell v$ $D(D^*)\tau^-\bar{\nu}_{\tau}$ and $B_c \to J/\psi\tau^-\bar{\nu}_{\tau}$ from the standard model (SM) prediction hints towards the possible signature of new physics (NP) beyond the standard model. In the b sector, it has been seen that some observables associated with $b \to c\tau v_{\tau}$ transition violate the lepton flavor universality which usually is the ratio of the branching fraction R_D and R_{D^*} defined as $R_{D^{(*)}} = \frac{\mathcal{B}(B \to D^{(*)}\tau v)}{\mathcal{B}(B \to D^{(*)} \ell v)}$. The latest value of measurements on $R_{D^{(*)}}$ in the experiments such as BaBar [1], Belle [2] and HFLVG groups [3] shows 3.3σ deviation from the SM prediction. Similarly other observables such as the ratio of B meson decaying to polarized and unpolarized final state meson, i.e $P_{\tau}(D^*)$ and $F_L(D^*)$ shows a deviation of 1.5-2 σ from SM [4]. Additionally, recent LHCb [5] measurements on $R(\Lambda_c)$ triggered a lot of theoretical interest due to the opposite behavior compared to R_{D^*} . Inspired by these deviations in the abovementioned measurements from their SM values, we study the semileptonic decays of the b baryons involving $b \to c \tau^- \bar{\nu}_{\tau}$ transition. This work explores the $\Xi_b \to \Xi_c \tau^- \bar{\nu}_{\tau}$ process in a model-independent effective theory called standard-model effective field theory (SMEFT) framework. However, flavor observables described by the low energy theory are interconnected by the SMEFT operator at the electroweak scale. Hence the $b \rightarrow s\ell\ell$ and $b \rightarrow s\nu\nu$

^{*}e-mail: pandadhiren530@gmail.com

^{**}e-mail: rmsp@uohyd.ac.in

process elucidates a correlation with the $b \to c\ell v$ process. The operator responsible for the the $b \to c\ell v$ transition can also generate the $b \to s\ell\ell$ and $b \to svv$ transitions. This implies the constraints from $b \to s\ell\ell$ and $b \to svv$ processes shall also be subject to the bounds from $b \to c\ell v$ process. We explore various observables associated with the aforementioned decay modes such as differential branching ratio (DBR), forward-backward asymmetry (A_{FB}^{τ}), and lepton flavor universality parameter (R_{Ξ_b}) within the SM and the presence of SMEFT NP operators.

2 Theoretical Framework

2.1 General Effective Hamiltonian

Dimension six SMEFT lagrangian can be expressed as [6]

$$\mathcal{L}_{\text{eff}} = \mathcal{L}_{\text{SM}} + \sum_{Q_i = Q_i^{\dagger}} \frac{C_i}{\Lambda^2} Q_i + \sum_{Q_i \neq Q_i^{\dagger}} \left(\frac{C_i}{\Lambda^2} Q_i + \frac{C_i^*}{\Lambda^2} Q_i^{\dagger} \right).$$
(1)

In the SMEFT, the operators which will be relevant for the $b \to c(u)\ell^- \bar{\nu}_\ell$ transitions are given as [6],

$$Q_{\ell q}^{(3)} = (\bar{\ell}_i \gamma_\mu \tau^I \ell_j) (\bar{q}_k \gamma^\mu \tau^I q_l), \qquad Q_{\phi u d} = i (\tilde{\phi}^{\dagger} D_\mu \phi) (\bar{u}_i \gamma^\mu d_j),$$

$$Q_{\ell e d q} = (\bar{\ell}_i^a e_j) (\bar{d}_k q_l^a), \qquad Q_{\ell e q u}^{(1)} = (\bar{\ell}_i^a e_j) \epsilon_{a b} (\bar{q}_k^b u_l),$$

$$Q_{\ell e q u}^{(3)} = (\bar{\ell}_i^a \sigma^{\mu \nu} e_j) \epsilon_{a b} (\bar{q}_k^b \sigma_{\mu \nu} u_l), \qquad Q_{\phi q}^{(3)} = (\phi^{\dagger} i \overleftrightarrow{D}_\mu \phi) (\bar{q}_i \tau^I \gamma^\mu q_j).$$
(2)

In the above equation, ℓ , q and ϕ represent lepton, quark and Higgs $SU(2)_L$ doublets, while the right-handed isospin singlets are denoted by e, u and d. Due to $SU(2)_L$ relations the operators $Q_{\ell q}^{(3)}$, $Q_{\phi q}^{(3)}$ enter the leptonic and semileptonic B decays with underlying quark level transitions $b \to s\ell\ell$ and $b \to sv\nu$.

In the presence of SMEFT NP the WET operators get modified and can be expressed as follows [6]

$$C_{V_{L}} = -\frac{v^{2}}{\Lambda^{2}} \frac{V_{cs}}{V_{cb}} (C_{\ell q}^{(3)/l23} - C_{\phi q}^{(3)23}), \qquad C_{V_{R}} = \frac{v^{2}}{2\Lambda^{2}V_{cb}} C_{\phi u d}^{23},$$

$$C_{S_{L}} = -\frac{v^{2}}{2\Lambda^{2}} \frac{V_{cs}}{V_{cb}} C_{\ell e d q}^{*l132}, \qquad C_{S_{R}} = -\frac{v^{2}}{2\Lambda^{2}} \frac{V_{tb}}{V_{cb}} C_{\ell e q u}^{*(1)/l32},$$

$$C_{T} = -\frac{v^{2}}{2\Lambda^{2}} \frac{V_{tb}}{V_{cb}} C_{\ell e q u}^{*(3)/l32}.$$
(3)

2.2 $\Xi_b \rightarrow \Xi_c \tau^- \bar{\nu}_\tau$ decay

The double differential decay rate corresponding to the $\Xi_b \to \Xi_c \tau^- \bar{\nu}_{\tau}$ decay is given as follows [7]

$$\frac{d^2\Gamma}{dq^2\,d\cos\theta} = N\left(1 - \frac{m_l^2}{q^2}\right)^2 \left[\mathcal{A}_1 + \frac{m_l^2}{q^2}\mathcal{A}_2 + 2\mathcal{A}_3 + \frac{4m_l}{\sqrt{q^2}}\mathcal{A}_4\right].\tag{4}$$

The explicit form of \mathcal{A}_1 , \mathcal{A}_2 , \mathcal{A}_3 , \mathcal{A}_4 can be found in the ref [7]. After integrating out with respect to $\cos \theta$ the differential branching ratio is given as

$$\frac{d\Gamma}{dq^2} = \frac{G_F^2 |V_{cb}|^2 q^2 |\vec{P}_{B_2}|}{512 \pi^3 m_{B_1}^2} \left(1 - \frac{m_l^2}{q^2}\right)^2 H_{\frac{1}{2} \to \frac{1}{2}} , \qquad (5)$$

where $H_{\frac{1}{2} \rightarrow \frac{1}{2}}$ denote the helicity amplitude containing both SM and NP contributions. The detailed forms of the helicity amplitudes can be found in ref [7]. We also consider the forward-backward asymmetry and ratio of the branching fractions in our analysis which are defined as follows

• Branching fraction ratio :

$$R_{\Xi_c}(q^2) = \frac{\frac{d\Gamma}{dq^2}(\Xi_b \to \Xi_c \tau^- \bar{\nu_\tau})}{\frac{d\Gamma}{dq^2}(\Xi_b \to \Xi_c \ell^- \bar{\nu_\ell})} \tag{6}$$

• Forward-backward asymmetry:

$$A_{FB}^{\tau}(q^2) = \frac{\left(\int_0^1 - \int_1^0\right) \frac{d^2\Gamma}{dq^2 d\cos\theta} d\cos\theta}{\left(\int_0^1 + \int_1^0\right) \frac{d^2\Gamma}{dq^2 d\cos\theta} d\cos\theta},\tag{7}$$

where $d\Gamma^{\lambda_{\tau}=\pm 1/2}/dq^2$ are the helicity dependent differential decay rates.

3 Constraints on new Physics couplings

Using $b \to c\tau^- \bar{\nu_{\tau}}$ observables such as R_D , R_{D^*} , $P_{\tau}(D^*)$, $F_L(D^*)$, and $R(\Lambda_c)$, we perform a naive χ^2 analysis to constrain the NP SMEFT Wilson Coefficients (WCs), which serve as main constraints to the baryon decay. Additionally, we incorporate the $b \to s\ell\ell$ and $b \to s\nu\nu$ decay channels such as $\mathcal{B}(B^0 \to K^*\nu\nu)$, $\mathcal{B}(B \to K^+\nu\nu)$, $\mathcal{B}(B \to K^+\tau^+\tau^-)$ and $\mathcal{B}(B_s \to \tau^+\tau^-)$, to provide complementary constraints to the baryonic decay channel. Considering the 2d scenario the allowed parameter space is depicted in figure [1] i.e., considering two couplings at a time. The obtained best-fit values of SMEFT WCs are presented in the table [1].

Figure 1. Allowed parameter space for the Scenario-I: $(C_{lq}^{(3)}, C_{\phi q}^{(3)})$ (Left) and Scenario:II $(C_{lequ}^{(1)}, C_{ledq})$ (Right).

4 Analysis of $\Xi_b \rightarrow \Xi_c \tau^- \bar{\nu}_{\tau}$ Process

We focus on the various observables in our analysis. These observables are DBR, A_{FB}^{τ} , and R_{Ξ_b} . We investigate these observables in different 2d scenarios.

Figs. [2] and [3] depict the q^2 dependencies of the observables mentioned above, where we have incorporated the constraints from the $b \to c\tau^- \bar{\nu}_{\tau}$ observables. It is evident from figure [2] that in the presence of WCs $C_{lq}^{(3)}$ and $C_{\phi q}^{(3)}$, DBR and R_{Ξ_b} are quite in good agreement

SMEFT couplings	$b \to c \tau v_{\tau}$	$b \rightarrow s \tau^+ \tau^-$	$b \rightarrow s v \bar{v}$
$(C_{lq}^{(3)}, C_{\phi q}^{(3)})$	(0.572, 0.587)	(-0.49, -0.078)	(0.08, 0.084)
$(C_{lq}^{(3)} = -C_{\phi q}^{(3)}, C_{lequ}^{(1)})$	(-0.007, -0.004)		—
$(C_{lq}^{(3)}, C_{lequ}^{(1)})$	(-0.014, -0.0038)		
$(C_{lq}^{(3)} = -C_{\phi q}^{(3)}, C_{ledq})$	(-0.0051, -0.033)		
$(C_{lq}^{(3)}, C_{ledq})$	(-0.0102, -0.033)		
$(C_{lequ}^{(1)}, C_{ledq})$	(1.290, 0.650)		—

Table 1. Fit parameters corresponding to different 2d scenarios.

Figure 2. q^2 dependent DBR(Left), A_{FB}^{τ} (Middle) and R_{Ξ_b} (Right) in the presence of $C_{la}^{(3)}$ and $C_{\phi a}^{(3)}$ WCs

with the SM prediction, however, a mild deviation can be seen in this observable. For the case of A_{FB}^{τ} the NP merges with SM prediction. Taking accounts WCs $C_{lequ}^{(1)}$, and C_{ledq} all observables show a significant deviation from their SM predictions. The DBR and the R_{Ξ_b} parameter show a significant deviation in the intermediate to high q^2 region, whereas the A_{FB} zero crossing point shifted in the presence of WCs $C_{lequ}^{(1)}$, and C_{ledq} . As mentioned earlier only $Q_{\ell q}^{(3)}$ and $Q_{\phi q}^{(3)}$ generate the $b \rightarrow s\ell\ell$ and $b \rightarrow svv$ transition, hence can be a complementary channel to obtain bounds on corresponding WCs. Using the complementary bound on $C_{lq}^{(3)}$ and $C_{\phi q}^{(3)}$ dependent DBR, A_{FB}^{τ} and R_{Ξ_b} depicted in figures [4] and [5]. Figure [4] shows that there is a deviation in DBR and R_{Ξ_b} curve from the SM prediction while using the bounds on $C_{lq}^{(3)}$ obtained from $\mathcal{B}(B \rightarrow K^+\tau^+\tau^-)$ and $\mathcal{B}(B_s \rightarrow \tau^+\tau^-)$ process. Whereas for the case of bounds obtained from $\mathcal{B}(B^0 \rightarrow K^*vv)$, $\mathcal{B}(B \rightarrow K^+vv)$ process Figure [5] shows almost very tiny deviation from SM. For the A_{FB}^{τ} curve in the case of the complementary channel, it shows no deviation from SM in the presence of $C_{lq}^{(3)}$ and $C_{\phi q}^{(3)}$. The bound obtained from the $b \rightarrow s\tau^+\tau^-$ process incorporating these fit the DBR curves show significant deviation from SM prediction. The upper limit on the branching fractions of the decays $B \rightarrow K^+\tau^+\tau^-$ and $B_s \rightarrow \tau^+\tau^-$ are far beyond the order of the SM prediction. Therefore, it has a larger parameter space compared to the $b \rightarrow svv$ and $b \rightarrow c\ell v$ process.

Figure 3. q^2 dependent DBR(Left), A_{FB}^{τ} (Middle) and R_{Ξ_b} (Right) in the presence of $(C_{lequ}^{(1)}, C_{ledq})$ WCs

Figure 4. q^2 dependent DBR(Left), A_{FB}^{τ} (Middle) and R_{Ξ_b} (Right) in the presence of $(C_{lequ}^{(1)}, C_{ledq})$ WCs from $\mathcal{B}(B \to K^+ \tau^+ \tau^-)$ and $\mathcal{B}(B_s \to \tau^+ \tau^-)$ Process.

Figure 5. q^2 dependent DBR(Left), A_{FB}^{τ} (Middle) and R_{Ξ_b} (Right) in the presence of $(C_{lequ}^{(1)}, C_{ledq})$ WCs from $\mathcal{B}(B_0 \to K^* \nu \nu)$, $\mathcal{B}(B \to K^+ \nu \nu)$ process.

5 Conclusion

In this study, we figured out that there is a correlation between the $b \to c\ell\nu$ and $b \to s\nu\nu$ and $b \to s\ell\ell$ processes at the electroweak scale by SMEFT framework. we performed χ^2 fit for the Wilson coefficients and obtained the best-fit values for the various 2d combinations. Utilizing these outcomes, we investigated the semileptonic decay mode $\Xi_b \to \Xi_c \tau^- \bar{\nu}_\tau$ within the SM and beyond SM in the SMEFT framework. We presented various q^2 dependent observables in various NP scenarios. We found that the WCs $C_{lequ}^{(1)}$, and C_{ledq} show a significant impact on the q^2 dependent observable of $\Xi_b \to \Xi_c \tau^- \bar{\nu}_\tau$ decay and hence sensitive to NP effect.

References

- [1] J. P. Lees *et al.* [BaBar], Measurement of an Excess of $\overline{B} \to D^{(*)}\tau^-\overline{\nu}_{\tau}$ Decays and Implications for Charged Higgs Bosons, Phys. Rev. D **88**, no.7, 072012 (2013) doi: 10.1103/PhysRevD.88.072012 [arXiv:1303.0571 [hep-ex]].
- [2] G. Caria *et al.* [Belle], Measurement of *R(D)* and *R(D*)* with a semileptonic tagging method," Phys. Rev. Lett. **124**, no.16, 161803 (2020) doi:10.1103/PhysRevLett.124.
 161803 [arXiv:1910.05864 [hep-ex]].
- [3] I. Adachi *et al.* [Belle-II], A test of lepton flavor universality with a measurement of *R*(*D*^{*}) using hadronic *B* tagging at the Belle II experiment, [arXiv:2401.02840[hep-ex]].
- [4] P. Asadi, M. R. Buckley and D. Shih, Asymmetry Observables and the Origin of $R_{D^{(*)}}$ Anomalies, Phys. Rev. D **99** (2019) no.3, 035015 doi:10.1103/PhysRevD.99.035015
- [5] R. Aaij *et al.* [LHCb], Observation of the decay $\Lambda_b^0 \rightarrow \Lambda_c^+ \tau^- \bar{\nu}_{\tau}$, Phys. Rev. Lett. **128** (2022) no.19, 191803 doi:10.1103/PhysRevLett.128.191803.
- [6] I. Ray and S. Nandi, JHEP **01** (2024), 022 doi:10.1007/JHEP01(2024)022 [arXiv:2305.11855 [hep-ph]]. I. Ray and S. Nandi,Test of new physics effects in $\overline{B} \rightarrow (D^{(*)}, \pi) \ell^- \overline{\nu}_{\ell}$ decays with heavy and light leptons,.JHEP **01**,022(2024). https://doi.org/10. 1007/JHEP01(2024)022
- [7] C. P. Haritha, K. Jain and B. Mawlong, Eur. Phys. J. C 83 (2023) no.2, 136. https://doi: 10.1140/epjc/s10052-023-11282-8