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Abstract. We explore the connection between the low-scale CP-violating
Dirac phase (δ) and high-scale leptogenesis in a Left-Right Symmetric Model
(LRSM) with scalar bidoublet and doublets. The model’s fermion sector in-
cludes one sterile neutrino (S L) per generation to enable a double seesaw mech-
anism in the neutral fermion mass matrix, implemented by performing type-I
seesaw twice. The first seesaw generates the Majorana mass term for heavy
right-handed (RH) neutrinos (NR), and in the second, the light neutrino mass is
linearly dependent on S L mass. We use charge conjugation (C) as the discrete
left-right (LR) symmetry, aiding in deriving the Dirac neutrino mass matrix
(MD) in terms of light and heavy RH neutrino masses and the light neutrino
mixing matrix UPMNS (containing δ). We demonstrate the feasibility of unfla-
vored thermal leptogenesis via RH neutrino decay using the obtained MD and
RH neutrino masses as input. A thorough analysis of the Boltzmann equations
describing asymmetry evolution is conducted in the unflavored regime, show-
ing that the CP-violating Dirac phase alone can generate the required leptonic
asymmetry for given input parameters, with or without Majorana phases. Fi-
nally, we discuss constraining our model with current and upcoming oscillation
experiments aimed at refining the value of δ.

1 Introduction
The LRSM [2, 3] emerged as a theoretical expansion of the Standard Model (SM) of particle
physics, aiming to treat left- and right-handed fermion fields equivalently. This framework
naturally elucidates observed parity violations in weak interactions through the dynamics of
symmetry breaking [4]. LRSM encompasses the entire range of chiral fermions, including
right-handed neutrinos (NR), which can possess both Dirac and Majorana mass terms contin-
gent upon the scalar content of the model. The choice of scalars also governs the model’s
phenomenological aspects.

Leptogenesis is a well-studied phenomenon in particle physics that seeks to explain the
observed asymmetry in the matter-antimatter content of the Universe, a significant discrep-
ancy in the SM. The lepton/antilepton number density asymmetry in leptogenesis is estab-
lished before the electroweak phase transition. This asymmetry is subsequently converted
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into the observed baryon asymmetry of the Universe (BAU) through higher-dimensional
anomalous B+ L violating sphaleron processes [5]. One of the early implementations of lep-
togenesis, proposed by Fukugita and Yanagida [6], involves CP-violating and lepton number-
violating out-of-equilibrium decay of heavy neutrinos introduced as singlets under the SM
gauge group. This type of leptogenesis is referred to as thermal leptogenesis, where the
masses of right-handed neutrinos are typically assumed to be very high, around 1010 GeV or
higher.

Initially, in the context of LRSM with doublet scalars, no Majorana mass terms were fea-
sible for heavy right-handed neutrinos, prohibiting leptogenesis. An extension of the fermion
sector with three generations of sterile neutrinos (S L) enables a double type-I seesaw [7] in
the neutrino mass matrix, thereby imparting a Majorana nature to right-handed neutrinos.
This framework has been applied to examine neutrinoless double beta decay [8]. We em-
ploy a similar framework to explore thermal unflavored leptogenesis and establish a direct
link between low- and high-energy CP violations. In our numerical analysis, we focus on
the dependence of BAU on the low-scale CP-violating phase (δ). The coincidence of light
and heavy neutrino mixings in our framework allows the dynamical evolution of baryon sec-
tor asymmetry to depend on the light neutrino sector. This connection not only reduces the
number of input parameters but also strengthens the viability of our model.

2 Model framework and motivation

In the LRSM, the SM gauge group is extended to

GLR ≡ S U(3)C × S U(2)L × S U(2)R × U(1)B−L (1)

where B − L represents the difference between baryon (B) and lepton (L) numbers. The
electric charge Q is defined as

Q = T3L + T3R +
B − L

2
. (2)

Here, T3L and T3R are, respectively, the third components of isospin of the gauge groups
S U(2)L and S U(2)R. The fermion spectrum of this model comprises all the SM fermions
plus a right-handed neutrino NR. The fermion fields with their quantum numbers (S U(2)L ×

S U(2)R × U(1)B−L) are as follows:

qL =

(
uL

dL

)
≡ [2, 1, 1/3] , qR =

(
uR

dR

)
≡ [1, 2, 1/3] ,

ℓL =

(
νL

eL

)
≡ [2, 1,−1] , ℓR =

(
NR

eR

)
≡ [1, 2,−1] .

We have dropped the S U(3)C quantum numbers for simplicity. The model’s scalar sector
comprises Higgs bidoublet Φ and the Higgs doublets: HL and HR. The matrix structures of
the scalar fields are,

Φ =

(
ϕ0

1 ϕ+2
ϕ−1 ϕ0

2

)
∼ [2, 2, 0], HL =

(
h+L
h0

L

)
∼ [2, 1, 1], HR =

(
h+R
h0

R

)
∼ [1, 2, 1].

The spontaneous symmetry breaking (SSB) scheme from LRSM to SM to U(1)em is as fol-
lows:



SSB of LRSM

S U(2)L × S U(2)R × U(1)B−L
⟨HR(1,2,1)⟩
−−−−−−−−→ S U(2)L × U(1)Y

⟨ϕ(1L,1/2Y )⟩
−−−−−−−−−→
⊂Φ(2,2,0)

U(1)em (3)

The right-handed gauge bosons W±R and Z′ get their masses from the VEV ⟨H0
R⟩ ≡ vR af-

ter SSB of LRSM to SM. HL does not participate in SSB, but it is required in the particle
spectrum for left-right invariance. The electroweak symmetry breaking (S U(2)L × U(1)Y →

U(1)em) is achieved by assigning non-zero VEVs: ⟨ϕ0
1⟩ ≡ v1 and ⟨ϕ0

2⟩ ≡ v2 to the neutral

components of Higgs bidoublet Φ, with v =
√
v21 + v

2
2 ≃ 246 GeV. The Yukawa Lagrangian

with usual quarks and leptons reads as,

−LYuk ⊃ qL

[
Y1Φ + Y2Φ̃

]
qR + ℓL

[
Y3Φ + Y4Φ̃

]
ℓR + h.c. . (4)

Here Φ̃ = σ2Φ
∗σ2 and σ2 is the second Pauli matrix. When the neutral components (ϕ0

1 and
ϕ0

2) of Higgs bidoublet acquire non-zero VEVs and give masses to quarks, charged leptons
and light neutrinos (Dirac mass) as follows,

Mu = Y1v1 + Y2v2 , Md = Y1v2 + Y2v1 ,

Me = Y3v2 + Y4v1 , MνD ≡ MD = Y3v1 + Y4v2 . (5)

Here, Mu and Md are the up-type and down-type quark mass matrices, and Me and MD rep-
resent charged lepton and Dirac neutrino mass matrices, respectively. In contrast to Yukawa
couplings, which are complex for non-zero CP-asymmetry [9], VEVs v1 and v2 are here as-
sumed to be real. If we have v2 ≪ v1 and |Y3| ≪ |Y4|, this will result in small Dirac neutrino
masses. With these assumptions, the charged lepton and light neutrino masses can be re-
expressed as:

Me ≈ Y4v1 , MD = v1

Y3 + Me
v2

v21

 ≈ vY3 ≡ vYD . (6)

Here, v =
√
v21 + v

2
2 ≈ v1 for v2 ≪ v1. For the left and right gauge coupling constants to

be equal, i.e. gL = gR, we need an additional discrete LR symmetry. The choice of this
LR symmetry is twofold [10]: (i.) a generalized parity P and (ii.) a generalized charge
conjugation C. Under the parity and charge conjugation operations, the fields transform as
follows:

P :


ℓL ↔ ℓR, qL ↔ qR,

Φ↔ Φ†, HL ↔ HR, Φ̃↔ Φ̃
†

∣∣∣∣∣∣∣∣∣∣ C :


ℓL ↔ ℓ

c
R, qL ↔ qc

R,

Φ↔ ΦT , HL ↔ H∗R, Φ̃↔ Φ̃
T . (7)

Imposition of either of these discrete symmetries in LRSM makes the Lagrangian in eq. (4)
invariant, and it leads to Hermitian Yukawa matrices for the case of discrete P symmetry. For
the case of discrete C symmetry, the Yukawa matrices become symmetric. In our discussion,
we consider C symmetry as the additional discrete symmetry.

The Lagrangian in eq. (4) has no lepton number or equivalently (through sphaleron pro-
cess) no baryon number violating term, one of the three Sakharov conditions. Thus, to have
successful leptogenesis in the above-mentioned framework, which is the aim of this work, we
require to extend the fermion sector with one additional fermion gauge singlet S L ∼ (1, 1, 0)

(S L
C
↔ S C

L ) per generation. The addition of fermion gauge singlets S L ensures lepton number
violation (LNV) by induced Majorana mass terms through the double seesaw mechanism.



2.1 Double Seesaw and Neutrino Masses

As discussed in [8], addition of sterile neutrinos (fermion gauge singlets) S L enable to im-
plement the double seesaw mechanism within the manifest LRSM. The relevant interaction
Lagrangian for generation of fermion masses is given by:

LLRDS M = −LMD − LMRS − LMS

= −
∑
α,β

ναL[MD]αβNβR −
∑
α,β

S αL[MRS ]αβNβR −
1
2

∑
α,β

S c
αR[MS ]αβS βL+ h.c. (8)

Here LMD and LMRS are the Dirac mass terms connecting νL − NR and NR − S L respectively.
The term LMS represents the bare Majorana mass term for sterile neutrinos S L. In eq. (8),
S c
αR ≡ C(S αL)T , C stands for charge conjugation operation (C = iγ2γ0). We note that the

Higgs doublet HL in our model framework is required just for left-right invariance, and it
does not participate in SSB. Hence < H0

L >= 0 and it prevents the mass term connecting
νL − S c

R through the interaction
∑
α,β ℓαL(YLS )αβH̃LS c

βR+ h.c..
After the scalar fields acquire VEVs and thus lead to SSB, the total 9 × 9 neutral fermion

mass matrix in the flavor basis (
(
νL,Nc

R, S L

)
) becomes

MLRDS M =

 0 MD

MT
D 0

0
MRS

0 MT
RS MS

 (9)

With the assumed hierarchy |MD| ≪ |MRS | < |Ms|, we apply double seesaw approximate
block diagonalization toMLRDS M . This gives us the mass matrices of light and heavy neutri-
nos as follows:

mν � MD(MT
RS )−1MS MT

DM−1
RS (mass matrix of light neutrinos),

mN ≡ MR � −MRS M−1
S MT

RS (mass matrix of RH neutrinos),
mS � MS (mass matrix of sterile neutrinos) . (10)

The detailed discussion on double seesaw approximations and derivations of mass matrices
expressed in eq. (10) can be referred from the ref. [8].

3 Connecting low-scale and high-scale CP violation

It is important to establish a connection between the parameters at low-energy (particularly
the CP-violating phases), which can be probed in present and future experiments, and at high-
energy that would be relevant for leptogenesis. For an unflavored analysis (i.e. considering
only N1 decays), this CP-asymmetry (ϵ1) is defined as

ϵ1 =
Γ(N1 → ℓΦ) − Γ(N1 → ℓ

cΦc)
ΓD

. (11)

Here, ΓD is the total decay rate for N1 and is expressed as
[Y†DYD]11mN1

8π , where YD is Yukawa
coupling matrix as introduced in eq. (6). The asymmetry ϵ1 arises from the interference
between tree and 1-loop wave and vertex diagrams as shown in Fig. 1. We work under the
assumption that the RH neutrinos have the mass hierarchy as mN1 < mN2 < mN3 , so that it is
the decays of the N1 that essentially determines the sought-after asymmetry [9].

ϵ1 ≈ −
3.mN1

16πv2(M†DMD)11

 Im[(M†DMD)2
21]

mN2

+
Im[(M†DMD)2

31]
mN3

 . (12)
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Figure 1: Tree, 1-loop and vertex diagrams for heavy neutrino decay. The asymmetry ϵ1
results from interference of the 1-loop diagrams with tree level coupling.

Here, MD = v.YD. From eq. (12), we see that to determine the CP-asymmetry, we need to find
the structure of MD and the masses of right-handed neutrinos (mNi ). The CI parametrization
is widely used in which YD is expressed in terms of a complex orthogonal matrix R [11]. In
our approach, the theoretical framework of double seesaw in LRSM with considered particle
spectrum incorporated with discrete LR symmetry C and the screening condition naturally
leads to a direct connection between low- and high-energy CP violations.

3.1 Screening effect

For the structure of the light neutrino mass matrix, mν, to be determined by the structure of
the sterile neutrino mass matrix, mS , we apply screening (cancellation) of Dirac structures
in the expression of mν of eq. (10) [12]. In ref. [8], the authors achieve it by considering
MD and MRS to be proportional to identity (I). The consideration was relevant for study-
ing neutrinoless double beta decay. However, we cannot have this screening condition for
studying leptogenesis as it leads to vanishing CP-asymmetry (ϵ1 = 0). We take the screening
condition [13]:

MD =
1
k

MT
RS (13)

Here k is a real constant. It is worth noting that the renormalization group (RG) running of
Yukawa couplings (YD and YRS ) from the LRSM symmetry breaking scale to the EW scale
might affect the screening mechanism. While ref. [13] mentions that RG running would not
destroy the screening, one may refer to ref. [12] for a detailed discussion on the impact of
RGE effect on the screening in the context of seesaw mechanism and neutrino masses. With
eq. (13), the relation between light neutrino and sterile neutrino mass matrices mν and mS

becomes mS = k2mν. The light neutrino Majorana mass matrix is diagonalized with the
Pontecorvo, Maki, Nakagawa, Sakata (PMNS) mixing matrix UPMNS ≡ Uν:

m̂ν = U†νmνU
∗
ν = diag(m1,m2,m3), mi > 0 for i = 1, 2, 3. (14)

In what follows, we will use the standard parametrization of the PMNS matrix [14]:

UPMNS ≡ Uν

=

 c13c12 c13s12 s13e−iδ

−c23s12 − c12s13s23eiδ c12c23 − s12s13s23eiδ s23c13
s12s23 − c12c23s13eiδ −c12s23 − s12s13c23eiδ c13c23


1 0 0
0 eiα/2 0
0 0 eiβ/2

︸               ︷︷               ︸
Majorana phase matrix

(15)

where δ is the Dirac CP phase (0 ≤ δ ≤ 2π) and α, β are the Majorana CP phases (0 ≤ α, β ≤
2π). All the other parameters have their usual meanings. The sterile neutrino Majorana
mass matrix mS is diagonalized by a unitary matrix US as m̂S = U†S mS U∗S , where we have



m̂S = diag(mS 1 ,mS 2 ,mS 3 ), mS k > 0, k = 1, 2, 3. Since mS = k2mν, the diagonalization can be
done with the same mixing matrix Uν, i.e. US = Uν.
So for the considered scenario, the light neutrino masses mi and the sterile neutrino masses
mS k are related as

mi =
1
k2 mS i , i = 1, 2, 3 (16)

For normal ordering (NO) mass spectrum of active neutrinos (m1 < m2 < m3), we have:

m1 = lightest neutrino mass m2 =

√
m2

1 + ∆m2
sol, m3 =

√
m2

1 + ∆m2
atm. (17)

Therefore from eq. (16), the relations between masses of active and sterile neutrinos become:

mS 1 =
m1

m3
mS 3 , mS 2 =

m2

m3
mS 3 , mS 1 < mS 2 < mS 3 . (18)

For inverted ordering (IO) (m3 < m1 < m2), we have:

m3 = lightest neutrino mass m1 =

√
m2

3 + ∆m2
atm, m2 =

√
m2

3 + ∆m2
sol + ∆m2

atm, (19)

and masses relations from eq. (16) become:

mS 1 =
m1

m2
mS 2 , mS 3 =

m3

m2
mS 2 , mS 3 < mS 1 < mS 2 . (20)

In both orderings, we have ∆m2
sol = ∆m2

21 and ∆m2
atm =

∣∣∣∆m2
31

∣∣∣ [15].

3.2 Choice of basis

We work in the basis where the charged lepton mass matrix is diagonal. The right-handed
neutrino Majorana mass matrix mN can be diagonalized by a unitary matrix UN as m̂N =

U†NmNU∗N . Here, we have m̂N = diag(mN1 ,mN2 ,mN3 ) with mNi (i = 1, 2, 3) being the mass of
the heavy RH Majorana neutrino Ni. By using the screening result (US = Uν), we have

m̂S = U†νmS U∗ν =⇒ m−1
S = U∗νm̂

−1
S U†ν . (21)

Using m−1
S from eq. (21) in the expression of mN from eq. (10), we have:

m̂N = −U†N MRS U∗ν︸       ︷︷       ︸ m̂−1
S U†νMT

RS U∗N︸       ︷︷       ︸ (22)

For eq. (22) to be consistent, the right-hand side should be diagonal. As m̂−1
S is diagonal, so

U†N MRS U∗ν = m̂RS . (23)

Since we have considered C symmetry as the additional discrete symmetry in our model
framework, we have MD and through eq. (13), MRS as the symmetric matrices1. Thus from
eq. (23), we must have

UN = Uν. (24)

Therefore, the diagonalization of RHN Majorana mass matrix mN can be performed with the
same mixing matrix Uν. The screening condition eq. (13) also modifies to:

MD =
1
k

MRS (25)
1This is one of the reasons for considering C symmetry as the additional discrete LR symmetry in our model

framework.



3.3 Determining MD

We derive here the matrix structure of MD analytically and show the connection between low-
and high-energy CP violations. From eq. (10), the heavy neutrino mass matrix is given as,
mN = −MRS m−1

S MT
RS . By using mS = k2mν and noting that MD,MRS are symmetric matrices,

we can rewrite it as
mN = −

1
k2 MRS m−1

ν MRS . (26)

Simplifying for MRS , we get the final expression as:

MRS = mν
√
−k2m−1

ν mN . (27)

Now by using the equations (24) and (25), and extracting the square root of matrices in
eq. (27), we get the expression for MD:

MD =
1
k

MRS = i.Uνm̂ν(m̂−1
ν m̂N)1/2UT

ν (28)

For the full derivation of MD, one may refer the appendix in [1]. We have thus connected low-
and high-scale CP violations through eq. (28), as MD is expressed in terms of Uν ≡ UPMNS .
The masses of heavy neutrinos are denoted by mNi (i = 1, 2, 3), with mN1 < mN2 < mN3 .

4 Leptogenesis
The scenario of leptogenesis to produce an asymmetry requires fulfillment of three Sakharov
conditions [16] as the minimum necessary criteria. Thus, in this section, we present an imple-
mentation of thermal leptogenesis in the context of our framework by ensuring the sanctity of
the required Sakharov criteria and also by producing the adequate lepton asymmetry required
for meeting the observational evidence of BAU from the Planck [17] data. The complex na-
ture of Yukawa coupling matrices (YD) ensures that the decays are CP-violating. To achieve
out-of-equlibrium conditions, the mass of NR is taken to be large so that the temperature of
the Universe at the time of their decay is less than their rest mass, and hence the probability of
inverse interactions decreases, keeping the decays out-of thermal equilibrium. To highlight
the connection between this asymmetry parameter, ϵ1 (relevant for leptogenesis) and the CP-
violating phase, δ (coming from low-scale physics), we derive the various terms in eq. (12)
analytically in terms of the CP-violating phase, using the structure of MD given in eq. (28)
along with the values of experimental parameters given in ref. [15] and by fixing rest of the
input parameters.

4.1 Normal Ordering

From eq. (12), for normal ordering (NO) mass spectrum of active neutrinos, we have:

Im[(M†DMD)2
21] = sin δ (2.06 + 16 cos δ) × 106 GeV2

Im[(M†DMD)2
31] = sin δ(−2.06 + 11.86 cos δ) × 106 GeV2

(M†DMD)11 = 1042.64 GeV2 (29)

Here, we have used the benchmark point values mN1 = 1013 GeV, mN2 = 1 × 1014 GeV,
mN3 = 5 × 1014 GeV and m1 = 0.01 eV. In the left panel of figure 2, we plot the variation
of ϵ1 against the allowed range of CP-violating phase δ [0, 2π]. Using the benchmark values
of all the input parameters along with the best-fit value of δ = 1.08π [15], and the standard
Higgs VEV of v ≃ 246 GeV, the asymmetry parameter here is numerically obtained as,

ϵ1 ∼ −3.8 × 10−4. (30)
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Figure 2: Plot for the dependence of ϵ1 on CP-violating Dirac phase, δ for the NO case in the
left panel and for the IO case in the right panel for different combinations of right-handed
neutrino mass and the hierarchy in that sector. Value of variable k represents the masses of
heavier right-handed neutrino for the structure: MN2 = 1×10k×MN1 and MN3 = 5×10k×MN1 .

4.2 Inverted Ordering

Similar to the analysis performed in subsection 4.1, we here present the results for the case
of inverted ordering. Thus, from eq. (12), we get:

Im[(M†DMD)2
21] = sin δ (9.46 + 2.36 cos δ) × 105 GeV2

Im[(M†DMD)2
31] = sin δ(−9.46 + 1.75 cos δ) × 105 GeV2

(M†DMD)11 = 2003.03 GeV2 (31)

Here, we take the benchmark point values mN1 = 1013 GeV, mN2 = 1 × 1014 GeV, mN3 =

5 × 1014 GeV and m3 = 0.01 eV. In the right panel of figure 2, we plot the variation of ϵ1
against the allowed range of CP-violating phase δ [0, 2π]. For a fair comparison, keeping the
values of benchmark input parameters the same as that for the NO case along with the best-fit
value of δ = 1.58π [15], the asymmetry parameter for the IO case is numerically obtained as,

ϵ1 ∼ +3.92 × 10−5. (32)

Inclusion of Majorana Phases

Our work primarily focuses on the Dirac CP phase (δ) as the exclusive source of CP violation
for phenomenological discussions. However, we also incorporate the Majorana phases (α, β)
introduced in eq. (15) to encompass all aspects of CP violation and to explore the possibility
of lowering the scale of the leptogenesis scenario. Thus, we express the various terms in
eq. (12) analytically in terms of the Majorana phases for two different values of the Dirac
phase: (1.) δ = 0 (CP conserving) and (2.) δ = 1.08π (best-fit) for both NO and IO cases.
A)- NO case

(1.) For δ = 0.

Im[(M†DMD)2
21] ≃ −[5.45 sin β + 85.81 sinα] × 10−10 GeV2 + f (α, β)O(10−26)

Im[(M†DMD)2
31] ≃ [1.43 sinα − 5.72 sin β − 0.16 sin (α − β) − 2.29 sin (α + β)]

× 10−10 GeV2 + f (α, β)O(10−26)

(M†DMD)11 = [1042.64 − [2.84 cosα − 11.37 cos (α − β) + 2.84 cos β] × 10−14] GeV2

(33)



Here, f (α, β)O(10n) corresponds to the sine and cosine functions of Majorana phases
(α, β) with an order of magnitude n or less, where n is an integer. Using the benchmark
values of all the input parameters and the standard Higgs VEV of v ≃ 246 GeV, the
asymmetry parameter here is numerically obtained as:

ϵ1 ∼ [(0.59 + 3.46 cos β) sinα + (6.23 − 2.60 cosα) sin β] × 10−20. (34)

(2.) For δ = 1.08π.

Im[(M†DMD)2
21] ≃ 3.34 × 106 GeV2 + f (α, β)O(10−9)

Im[(M†DMD)2
31] ≃ 3.37 × 106 GeV2 + f (α, β)O(10−9)

(M†DMD)11 ≃ 1042.64 GeV2 + f (α, β)O(10−14) (35)

With the benchmark values, the asymmetry parameter is numerically obtained as:

ϵ1 ∼ −3.8 × 10−4 + f (α, β)O(10−13) (36)

B)- IO case

(1.) For δ = 0.

Im[(M†DMD)2
21] ≃ −(5.87 sinα + 0.98 sin β + 3.91 sin (α − β)) × 10−10 GeV2

+ f (α, β)O(10−27)

Im[(M†DMD)2
31] ≃ −(1.48 sinα + 0.74 sin β − 5.93 sin (α − β)) × 10−10 GeV2

+ f (α, β)O(10−26)

(M†DMD)11 = [2003.03 − [1.71 cosα − 1.14 cos (α − β)] × 10−13] GeV2 (37)

With the values of input benchmark parameters, the asymmetry parameter here is nu-
merically obtained as:

ϵ1 ∼ [(3.03 + 0.29 cosα) sinα + 1.34 sin (α − β) + 0.55 sin β] × 10−20. (38)

(2.) For δ = 1.58π.

Im[(M†DMD)2
21] ≃ −9.73 × 105 GeV2 + f (α, β)O(10−10)

Im[(M†DMD)2
31] ≃ 8.74 × 105 GeV2 + f (α, β)O(10−10)

(M†DMD)11 ≃ 2003.03 GeV2 + f (α, β)O(10−13) (39)

With the values of the input benchmark parameters, the asymmetry parameter is nu-
merically obtained as follows:

ϵ1 ∼ +3.92 × 10−5 + f (α, β)O(10−20). (40)

In figure 3, we depict the variation of the CP asymmetry parameter (ϵ1) with respect to the
Majorana phases α and β, while holding the Dirac phase (δ) fixed at a CP-conserving value
(δ = 0) and at the best-fit value (δ = 1.08π) for both NO and IO cases. These plots reveal that
the dependence of ϵ1 on the Majorana phases is several orders of magnitude smaller than its
dependence on the Dirac CP phase. Consequently, Majorana phases play an insignificant role
in generating the required CP asymmetry. Hence, we do not include the Majorana phases for
our Boltzmann analysis to be performed in the subsequent section.



Figure 3: 3D plots depicting the dependence of asymmetry parameter ϵ1 on both the Majorana
phases α and β for the case of zero (δ = 0) and best-fit (δ = 1.58π) Dirac phase for the
NO case in the top panel and for the IO case in the bottom panel.

4.3 Boltzmann Analysis

Here, we present the structure of flavor singular coupled BEs required for our analysis,

dηN1

dz
= −

ηN1

ηN
eq
− 1

 (D1 + S 1) , (41)

dη∆L

dz
= ε1

ηN1

ηN
eq
− 1

 D̃1 −
2
3
η∆LWl , (42)

where z = mN1/T is a dimensionless variable (T being the temperature of the Universe) and
ηN

eq ≡ nN
eq/n

γ = z2K2(z)/2ζ(3) is the heavy neutrino equilibrium number density, Kn(z) being
the n-th order modified Bessel function of the second kind and ζ(3) is Riemann zeta function
(ζ(s)) evaluated at s = 3. nγ is referred as the comoving photon number density. The various
decay (D1, D̃1), scattering (S 1) and washout (Wl) rates appearing in equations (41) and (42)
are given by

D̃1 =
z

nγHN
γ̃D, D1 =

z
nγHN

γD, S 1 =
z

nγHN
(γS L + γS R ), (43)

Wl =
z

nγHN

[
γD + γ̃S L + γ̃S R + γ(∆L=0) + γ(∆L=1) + γ(∆L=2)

]
, (44)

where HN ≡ H(z = 1) ≃ 17m2
N1
/MPl is the Hubble parameter at z = 1, assuming only SM

degrees of freedom in the thermal bath, MPl = 1.2×1019 GeV is the Planck mass. The solution
to these BEs considering all the decays, inverse-decays, scatterings and washout terms of N1
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Figure 4: Cosmological evolution of the number densities present in the coupled BEs (41)
and (42) for the NO case in the left panel and for the IO case in the right panel.

for both the NO and IO cases is presented in figure 4. The overall interplay and dynamics of
these terms provide an acceptable magnitude for the final asymmetry in the lepton sector close
to (η∞

∆L ∼ −6 × 10−10) as shown in the figure. Then, we assume a successful transfer of this
asymmetry to the baryonic sector via sphalerons. As the value of asymmetry parameter, (ϵ1)
comes to be negative in this NO case (eq. 30), the sign of final baryon asymmetry, (η∞

∆B) is
obtained to be positive here, in accordance with the leptogenesis requirements. But the value
of asymmetry parameter, (ϵ1) for the IO case comes to be positive (eq. 32), hence the sign of
final baryon asymmetry, (η∞

∆B) for the given parameter space is obtained to be negative here,
thus IO case is ruled out for the chosen parameter space.

5 Conclusion

We have explored thermal unflavored leptogenesis within a category of Left-Right Symmetric
Models featuring a scalar bidoublet and doublets, along with the addition of a single copy
of sterile neutrino, S L, per generation in the fermion sector. The requisite source of CP
violation for successful leptogenesis is the generic Dirac neutrino mass matrix, (MD), which
establishes a connection between νL and NR. The distinctive aspect of our investigation lies
in MD becoming contingent on the low-energy CP-violating Dirac phase, δ (embedded in
UPMNS ), without resorting to any parameterization. This presents an intriguing incentive for
ongoing long baseline experiments like NOvA, T2K, DUNE, T2HK, T2HKK, and future
endeavours like JUNO to explore leptogenesis through δ indirectly.

For thoroughness, we conduct our analysis for both the normal and inverted mass or-
derings of the light neutrinos. Employing specified benchmark points for the normal or-
dering case, we obtain a final baryon asymmetry value consistent with the observed η∞

∆B =

(6.105+0.086
−0.081) × 10−10. Correspondingly, for similar benchmark values, the final asymmetry

achieved in the inverted ordering case exhibits approximately the same order of magnitude,
albeit with a negative sign. Remarkably, our analysis reveals that within the considered model
framework of double seesaw, the asymmetry parameter (ϵ1) displays minimal dependency on
the Majorana phases α and β for the provided set of input parameters in both the normal and
inverted ordering cases. This underscores δ as the principal source for generating the requi-
site baryon asymmetry. However, with other choices of input parameters, one may observe
a distinct dependency of ϵ1 on α and β, albeit such selections might steer us away from the
thermal unflavored regime. We intend to extend this study to examine the impact of non-zero
Majorana phases in the flavored or resonant regime of leptogenesis.
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