

Measurement of jet production in deep inelastic scattering and NNLO determination of the strong coupling at ZEUS[†] 42nd International Conference on High Energy Physics

Florian Lorkowski on behalf of the ZEUS collaboration

 ${\tt florian.lorkowski@physik.uzh.ch}$

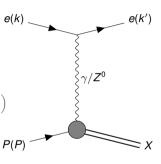
University of Zürich

July 18, 2024

Motivation Deep inelastic scattering

Jet production in DIS at ZEUS

Florian Lorkowski 2024-07-18


DIS
Jet production
Experiment
Measurement
QCD analysis
Summary

Motivation

Deep inelastic scattering

Inclusive deep inelastic scattering (DIS) measurements in lepton-hadron collisions ($ep \rightarrow eX$) are essential to determine the parton distribution functions (PDFs) of the proton (xf). At leading order:

$$\frac{\mathrm{d}^{2}\boldsymbol{\sigma_{\mathrm{NC DIS}}^{\pm}}}{\mathrm{d}x_{\mathrm{Bj}}\mathrm{d}Q^{2}} = \frac{2\pi\alpha^{2}}{x_{\mathrm{Bj}}Q^{4}} \left(\underbrace{Y_{+}F_{2}(x_{\mathrm{Bj}},Q^{2})}_{\sim \boldsymbol{x}\boldsymbol{q} + \boldsymbol{x}\bar{\boldsymbol{q}}} \mp \underbrace{Y_{-}x_{\mathrm{Bj}}F_{3}(x_{\mathrm{Bj}},Q^{2})}_{\sim \boldsymbol{x}\boldsymbol{q} - \boldsymbol{x}\bar{\boldsymbol{q}}} - \underbrace{y^{2}F_{L}(x_{\mathrm{Bj}},Q^{2})}_{\sim \boldsymbol{x}\boldsymbol{g} \times \boldsymbol{\alpha_{s}}} \right)$$

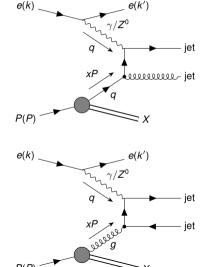
- \Rightarrow By measuring F_2 and F_3 , the quark- and antiquark-distributions, xq and $x\bar{q}$, can be probed
- ▶ By measuring F_L or using scaling violations in DGLAP equations the product of the gluon distribution xg and the strong coupling constant α_s can be determined
- Using higher-order terms, the two can be disentangled to some extent, but a strong correlation remains (when using only HERA data)

Motivation Inclusive jet production

Jet production in DIS at ZEUS

Florian Lorkowski 2024-07-18

Motivation
DIS
Jet product


Experiment

Measurement QCD analysis

QCD analysis Summary

Jet measurements

- Already at leading order, jet production in DIS is sensitive to the strong coupling independently of the gluon distribution (upper graph)
- Additionally, jet production can also be used to further constrain the gluon distribution (lower graph)
- Inclusive jet measurements are especially well suited for precision determinations of the strong coupling constant due to their small uncertainties on both the experimental and theoretical side

[†]Leading order in the Breit frame; see slide A1

ExperimentHERA and ZEUS

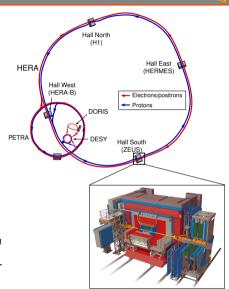
Jet production in DIS at ZEUS

Florian Lorkowski 2024-07-18

Experiment
Measurement
QCD analysis
Summary

HERA accelerator

- World's only lepton-hadron collider so far
- Located at DESY in Hamburg, Germany
- Two run periods:


► HERA I: 1992 – 2000

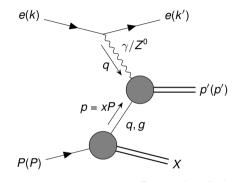
► HERA II: 2003 – 2007

- Circular collider of length 6336 m
- Collide electrons/positrons at 27.5 GeV with protons at 920 GeV $\rightarrow \sqrt{s} = 318$ GeV

ZEUS detector

- General purpose particle detector
- ▶ Integrated luminosity during HERA II: 347 pb⁻¹
- High-resolution uranium-scintillator calorimeter allows precise measurement of jet energies

Measurement Cross section definition


Jet production in DIS at ZEUS

Florian Lorkowski 2024-07-18

Motivation
Experiment
Measurement
Cross sections
QED radiation
QCD analysis
Summary

- ▶ Inclusive jets, clustered using k_{\perp} algorithm and p_{\perp} -weighted scheme in Breit frame
- ► Use entire HERA II dataset (347 pb⁻¹)
- Analysis phase space

$$150 \,\mathrm{GeV}^2 < Q^2 < 15\,000 \,\mathrm{GeV}^2$$

 $0.2 < y < 0.7$

$$Q^2 = -q^2 = -(k'-k)^2$$

Boson virtuality/ Momentum transfer

$$x_{\rm Bj} = \frac{Q^2}{2P \cdot q}$$

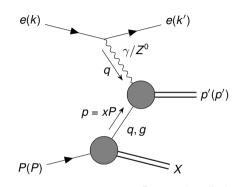
Bjorken scaling parameter

$$y = \frac{P \cdot q}{P \cdot k}$$

Inelasticity

Measurement Cross section definition

Jet production in DIS at ZEUS


Florian Lorkowski 2024-07-18

Motivation
Experiment
Measurement
Cross sections
QED radiation
QCD analysis
Summary

- ▶ Inclusive jets, clustered using k_⊥ algorithm and p_⊥-weighted scheme in Breit frame
- ► Use entire HERA II dataset (347 pb⁻¹)
- Analysis phase space

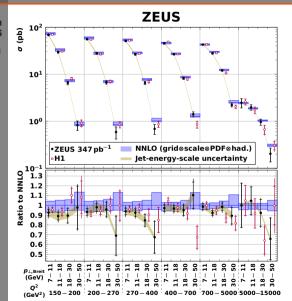
150 GeV² <
$$Q^2$$
 < 15 000 GeV²
0.2 < y < 0.7
7 GeV < $p_{\perp, Breit}$ < 50 GeV
-1 < η_{lab} < 2.5

- Hadron-level jets
- Weak-boson exchange included
- QED Born-level (higher-order radiative effects removed)

$$Q^2 = -q^2 = -(k'-k)^2$$

$$x_{\rm Bj} = \frac{Q^2}{2P \cdot q}$$

$$y = \frac{P \cdot q}{P \cdot k}$$


MeasurementMeasured inclusive jet cross sections

Jet production in DIS at ZEUS

Florian Lorkowski 2024-07-18

Motivation
Experiment
Measurement
Cross sections
QED radiation
QCD analysis
Summary

- Measured cross sections are compatible with previous measurement from H1 collaboration[†] and uncertainties are comparable[‡]
- Measurements are compatible with NNLO QCD predictions[§]
- Inner error bars: unfolding uncertainty; outer error bars: total uncertainty

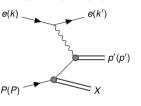
[†]EPJC 75, 65 (2015). arXiv:1406.4709

[‡] For both measurements, uncertainties appear larger due to negative correlations

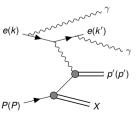
 $[\]S$ Matrix elements from NNLOJET (JHEP 2017, 18 (2017). arXiv:1703.05977), PDFs: HERAPDF2.0Jets NNLO (EPJC 82, 243 (2022). arXiv:2112.01120)

Measurement QED radiation

Jet production in DIS at ZEUS


Florian Lorkowski 2024-07-18

Experiment
Measurement
Cross sections
QED radiation
QCD analysis
Summary


Treatment of QED radiation

- Predictions for jet production available at QED Born-level (running coupling included, but no radiative corrections)
- In the data, have initial- and final-state QED radiation, especially on the electron line
- Standard procedure: apply 'correction' to the data, to convert it to QED Born-level
- Usually, this cannot be undone, such that data can only ever be compared to QED Born-level predictions
- This analysis: apply correction in a reversible way and provide additional, alternative correction that facilitates more comprehensive comparisons
- $\rightarrow\,$ Data can be compared to NNLO QCD+NLO EW predictions, when they become available in the future †

QED Born-level

QED radiation

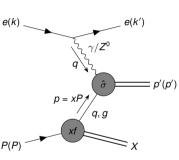
 $^{^\}dagger \text{DIS}$ at NLO EW already available: CPC 94, 2 p.128 (1996). arXiv:hep-ph/9511434

QCD analysis Strategy

Jet production in DIS at ZEUS

Florian Lorkowski 2024-07-18

Experiment Measurement QCD analysis


Strategy
Strong coupling α_s -scan
Running coupling
Summary

▶ Simultaneous fit of PDF parameters and $\alpha_s(M_Z^2)$ at NNLO

- Datasets used
 - ► H1+ZEUS combined inclusive DIS[†]
 - ► ZEUS HERA I inclusive jets at high Q^{2‡}
 - ► ZEUS HERA I+II dijets at high Q²§
 - ► ZEUS HERA II inclusive jets at high Q²
- Inclusion of additional jet data is expected to reduce uncertainty of $\alpha_s(M_Z^2)$
- Statistical correlations between ZEUS HERA II jet datasets taken into account via correlation matrix
- ▶ Use HERAPDF parameterisation of PDFs ($f = g, u_v, d_v, \bar{U}, \bar{D}$)

$$xf(x) = A_f x^{B_f} (1-x)^{C_f} (1+D_f x+E_f x^2)$$

 Use settings similar to HERAPDF2.0Jets NNLO (central scales, cuts, model parameters, treatment of hadronisation and theory grid uncertainty)

[†]EPJC 75, 580 (2015) arXiv::1506.06042

[‡]PLB 547, 164 (2002) arXiv::hep-ex/0208037

[§]EPJC 70, 965 (2010) arXiv::1010.6167

QCD analysis Strong coupling

Jet production in DIS at ZEUS

Florian Lorkowski 2024-07-18

Experiment
Measurement
QCD analysis
Strategy
Strong coupling α_s -scan
Running coupling
Summary

For reference, HERAPDF2.0Jets NNLO found

$$lpha_{\rm s}(\textit{M}_{\it Z}^2) =$$
 0.1156 \pm 0.0011 (exp./fit) $^{+0.0001}_{-0.0002}$ (model/param.) \pm 0.0029 (scale)

This analysis

$$\alpha_{\rm s}(\textit{M}_{\it Z}^2) = extstyle{0.1143} \pm 0.0017 ext{ (exp./fit)} \ \ ^{+0.0006}_{-0.0007} ext{ (model/param.)} \ ^{+0.0012}_{-0.0005} ext{ (scale)}$$

- Central value is compatible with HERAPDF and with PDG world average
- Increased experimental uncertainty, due to fewer jet datasets used
- ▶ Significantly decreased scale uncertainty, due to absence of low- Q^2 jet data
 - Cross-section scale-dependence assumed as fully correlated between all jet measurements
 - When fitting points far away from each other in phase space, the cross-section scale-dependence can be much less correlated or even anti-correlated

QCD analysis Strong coupling

Jet production in DIS at ZEUS

Florian Lorkowski 2024-07-18

Motivation Experiment Measurement QCD analysis Strategy Strong coupling α_s -scan Running coupling

Summarv

For reference, HERAPDF2.0Jets NNLO found

$$lpha_{\rm s}(\textit{M}_{\it Z}^2) = 0.1156 \pm 0.0011$$
 (exp./fit) $^{+0.0001}_{-0.0002}$ (model/param.) ± 0.0029 (scale)

This analysis

$$\alpha_{\rm s}(\textit{M}_{\it Z}^2) = 0.1143 \pm 0.0017$$
 (exp./fit) $^{+0.0006}_{-0.0007}$ (model/param.) $^{+0.0012}_{-0.0005}$ (scale)

- Central value is compatible with HERAPDF and with PDG world average
- Increased experimental uncertainty, due to fewer jet datasets used
- ▶ Significantly decreased scale uncertainty, due to absence of low- Q^2 jet data
 - Cross-section scale-dependence assumed as fully correlated between all jet measurements
 - When fitting points far away from each other in phase space, the cross-section scale-dependence can be much less correlated or even anti-correlated

QCD analysis Strong coupling

Jet production in DIS at ZEUS

Florian Lorkowski 2024-07-18

Experiment
Measurement
QCD analysis
Strategy
Strong coupling
ors-scan
Running coupling

For reference, HERAPDF2.0Jets NNLO found

$$\alpha_{\rm s}(M_Z^2) = 0.1156 \pm 0.0011$$
 (exp./fit) $^{+0.0001}_{-0.0002}$ (model/param.) ± 0.0029 (scale)

This analysis

$$lpha_{
m s}(\emph{M}_{\it Z}^2) = 0.1143\,\pm 0.0017$$
 (exp./fit) $^{+0.0006}_{-0.0007}$ (model/param.) $^{+0.0012}_{-0.0005}$ (scale)

- Central value is compatible with HERAPDF and with PDG world average
- Increased experimental uncertainty, due to fewer jet datasets used
- ▶ Significantly decreased scale uncertainty, due to absence of low- Q^2 jet data
 - Cross-section scale-dependence assumed as fully correlated between all jet measurements
 - When fitting points far away from each other in phase space, the cross-section scale-dependence can be much less correlated or even anti-correlated

QCD analysis Alternative treatment of scale uncertainty

Jet production in DIS at ZEUS

Florian Lorkowski 2024-07-18

Motivation

Experiment Measurement QCD analysis Strategy Strong coupling α_s -scan Running coupling Summary

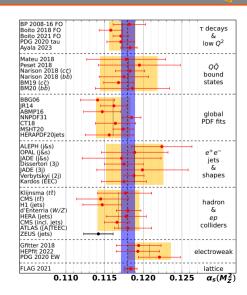
- Alternative treatment: assume scale dependence is half correlated between all measurements
- Despite absence of low-Q² jet data in the fit, additional reduction is significant

$$lpha_{
m s}(\textit{M}_Z^2) = 0.1143 \pm \ldots ^{+0.0012}_{-0.0005} \, ({
m scale})$$
 \downarrow $lpha_{
m s}(\textit{M}_Z^2) = 0.1142 \pm \ldots ^{+0.0006}_{-0.0004} \, ({
m scale})$

QCD analysis Alternative treatment of scale uncertainty

Jet production in DIS at ZEUS

Florian Lorkowski 2024-07-18


Experiment Measurement QCD analysis Strategy Strong coupling α_s -scan Running coupling Summary

 Alternative treatment: assume scale dependence is half correlated between all measurements

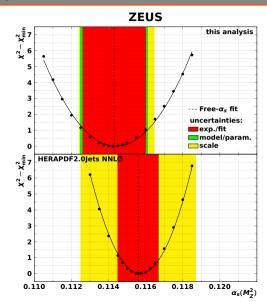
Despite absence of low-Q² jet data in the fit, additional reduction is significant

$$lpha_{
m s}(\emph{M}_{\it Z}^2) = 0.1143 \pm \ldots ^{+0.0012}_{-0.0005} {
m (scale)} \ \downarrow \ lpha_{
m s}(\emph{M}_{\it Z}^2) = 0.1142 \pm \ldots ^{+0.0006}_{-0.0004} {
m (scale)}$$

▶ Reduced scale uncertainty leads to one of the most precise collider measurements of $\alpha_s(M_Z^2)^{\dagger}$

[†]PTEP 2022, 8, 083C01 (2022) + 2023 update

QCD analysis


 $\alpha_{\rm s}$ -scan

Jet production in DIS at ZEUS

Florian Lorkowski 2024-07-18

Motivation
Experiment
Measurement
QCD analysis
Strategy
Strong coupling α_{s} -scan
Running coupling
Summary

- ▶ Upper panel: $\chi^2(\alpha_s(M_Z^2))$ -scan, alongside result from $\alpha_s(M_Z^2)$ -free fit \rightarrow excellent agreement
- Lower panel: analogous figure from HERAPDF2.0Jet NNLO
- Need better treatment of scale uncertainty, so that we can combine small scale uncertainty from ZEUS with small experimental uncertainty from HERAPDF

QCD analysis Running of the strong coupling

Jet production in DIS at ZEUS

Florian Lorkowski 2024-07-18

Motivation

Experiment Measurement QCD analysis Strategy Strong coupling $\alpha_{\rm S}$ -scan Running couplin coupling coupling coupling Running coupling

Summarv

Strong coupling depends on the scale at which it is evaluated. At leading order

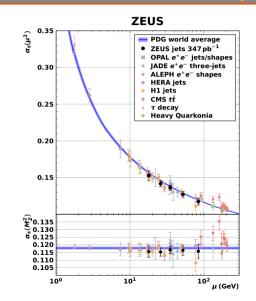
$$\alpha_{s}(\mu^{2}) = \frac{\alpha_{s}(\mu_{0}^{2})}{1 + \alpha_{s}(\mu_{0}^{2})b_{0}\log\left(\frac{\mu^{2}}{\mu_{0}^{2}}\right)}$$

- 'Measure' this curve to test if QCD is the correct theory to describe strong interaction
 - Assign each jet point a scale
 - Form subsets of jet points with similar scales
 - For each subset, perform a single-parameter α_s fit using fixed PDFs

QCD analysis Running of the strong coupling

Jet production in DIS at ZEUS

Florian Lorkowski 2024-07-18


 $\begin{tabular}{ll} Motivation \\ Experiment \\ Measurement \\ QCD analysis \\ Strategy \\ Strong coupling \\ α_s-scan \\ \end{tabular}$

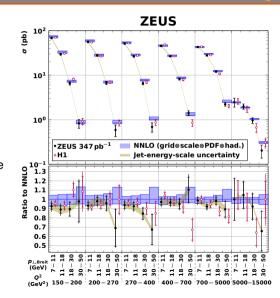
Summarv

Strong coupling depends on the scale at which it is evaluated. At leading order

$$\alpha_{s}(\mu^{2}) = \frac{\alpha_{s}(\mu_{0}^{2})}{1 + \alpha_{s}(\mu_{0}^{2})b_{0}\log\left(\frac{\mu^{2}}{\mu_{0}^{2}}\right)}$$

- 'Measure' this curve to test if QCD is the correct theory to describe strong interaction
 - Assign each jet point a scale
 - Form subsets of jet points with similar scales
 - For each subset, perform a single-parameter α_s fit using fixed PDFs
- Observe no deviation from QCD prediction

Summary Cross section measurement


Jet production in DIS at ZEUS

Florian Lorkowski 2024-07-18

Motivation Experiment Measurement QCD analysis Summary Outlook

Cross section measurement

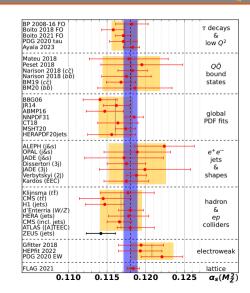
- Performed precision measurement of inclusive jet cross sections in deep inelastic scattering at ZEUS
- Used more than 70% of the entire available luminosity at ZEUS
- Cross sections are compatible with the corresponding H1 measurement and NNLO QCD theory
- New dataset is an ideal ingredient for precision determinations of α_s(M_Z²) in QCD fits

Summary NNLO QCD analysis

Jet production in DIS at ZEUS

Florian Lorkowski 2024-07-18

Experiment
Measurement
QCD analysis
Summary
Outlook


QCD analysis

- ▶ Dataset used in $\alpha_s(M_Z^2)$ determination at NNLO
- Achieved very precise measurement of $\alpha_s(M_Z^2)$

$$\alpha_{\rm s}(M_Z^2)=0.1142\pm0.0019$$

due to

- Newly measured inclusive jet dataset
- ► Restriction to high-Q² jet data in the fit
- Improved treatment of theoretical uncertainty
- Investigated scale-dependence of strong coupling and found results consistent with NNLO QCD prediction

Summary

Outlook: strong coupling from DIS

Jet production in DIS at ZEUS

Florian Lorkowski 2024-07-18

Experiment Measurement QCD analysis Summary

Motivation

Electron-ion collider

- ▶ EIC is expected to start operation in 2030 at Brookhaven National Laboratory in New York
- ▶ Will deliver *ep*-collisions at $\sqrt{s} = 29,45,63,105,141$ GeV

Strong coupling from inclusive DIS

- Inclusive DIS data at different energies has very good sensitivity to $\alpha_s(M_Z^2)$, even without jet data
- ▶ Projection of PDF + $\alpha_s(M_Z^2)$ fit using HERA and EIC inclusive DIS[†]
- Assuming one year of data at each of the five centre-of-mass energies of EIC

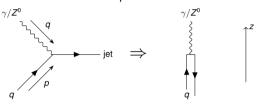
$$\alpha_{\rm s}(M_Z^2) = 0.1159 \pm 0.0004 \text{ (exp./fit)} ^{+0.0002}_{-0.0001} \text{ (model/param.)}$$

So far no consensus how to treat scale uncertainty of inclusive DIS data

[†]EPJC 83, 1011 (2023). arXiv:2307.01183

Measurement

Breit frame


Jet production in DIS at ZEUS

Florian Lorkowski 2024-07-18

Measurement
Breit frame
Simulation
Systematics
NNLO predictions
QCD analysis

Single jets may arise purely from QED, which is less interesting for the study of QCD

To suppress these events: require minimum transverse momentum in Breit frame

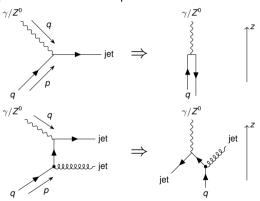
In the **Breit frame**, the parton and boson collide head-on

$$q^{\mu}=egin{pmatrix} 0 \ 0 \ -Q \end{pmatrix}$$

$$ho^\mu = egin{pmatrix} Q/2 \ 0 \ 0 \ Q/2 \end{pmatrix}$$

Measurement

Breit frame



Jet production in DIS at ZEUS

Florian Lorkowski 2024-07-18

Measurement
Breit frame
Simulation
Systematics
NNLO predictions
QCD analysis

- ▶ Single jets may arise purely from QED, which is less interesting for the study of QCD
- To suppress these events: require minimum transverse momentum in Breit frame

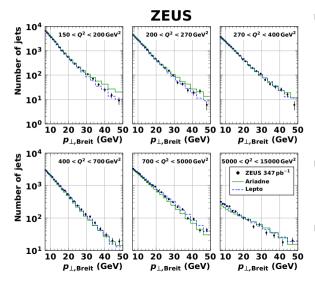
In the **Breit frame**, the parton and boson collide head-on

$$q^{\mu} = egin{pmatrix} 0 \ 0 \ -Q \end{pmatrix} \ egin{pmatrix} Q/2 \ 0 \end{pmatrix}$$

$$p^\mu = egin{pmatrix} Q/2 \ 0 \ 0 \ Q/2 \end{pmatrix}$$

- Lowest order process: produce two jets of equal transverse momentum ("dijet")
- Inclusive jets: count each jet individually; events can contribute multiple times

Measurement Simulation



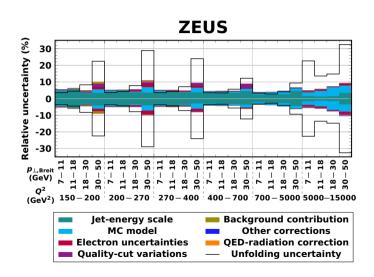
Jet production in DIS at ZEUS

Florian Lorkowski 2024-07-18

Measurement
Breit frame
Simulation
Systematics
NNLO predictions

QCD analysis

- Reconstructed jets corrected to hadron level via two-dimensional matrix unfolding procedure using response matrices obtained from Monte Carlo samples
 - ARIADNE: colour-dipole model
 - ► LEPTO: leading-log parton cascade
- After reweighting, the models give a good description of the data across the entire phase space
- Performed cross-check using bin-by-bin correction; results are very consistent


MeasurementSystematic uncertainties

Jet production in DIS at ZEUS

Florian Lorkowski 2024-07-18 Measurement

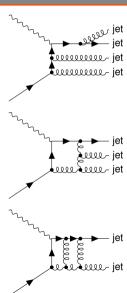
Breit frame
Simulation
Systematics
NNLO predictions
QCD analysis

- Systematic uncertainty mostly dominated by jet-energy scale (uncertainty of MC detector simulation)
- In high-p_{⊥,Breit} or high-Q² region, other uncertainties become relevant/dominant
- Unfolding uncertainty appears large in low-statistics region
- Bins with large unfolding uncertainty usually strongly anti-correlated

Measurement Theoretical predictions

Jet production in DIS at ZEUS

Florian Lorkowski 2024-07-18


Measurement
Breit frame
Simulation
Systematics
NNLO prediction
QCD analysis

Theoretical predictions

- Cross section predictions are calculated at NNLO
- Matrix elements calculated using NNLOJET[†]
- PDFs taken from HERAPDF2.0Jets NNLO[‡]
- ho $lpha_{
 m s}(M_Z^2)=0.1155,\,\mu_{
 m r}^2=\mu_{
 m f}^2=Q^2+p_\perp^2$
- Predictions corrected for hadronisation and Z^0 -exchange

Theoretical uncertainties

- Six point scale variation by factor 2
- PDF uncertainty (fit, model, parameterisation)
- Statistical uncertainty of matrix element generation
- Hadronisation correction uncertainty

[†]JHEP 2017, 18 (2017). arXiv:1703.05977

[‡]EPJC 82, 243 (2022). arXiv:2112.01120

QCD analysis Fit settings

Jet production in DIS at ZEUS

Florian Lorkowski 2024-07-18

Measurement QCD analysis Fit settings PDFs

Goodness of fit

Fit settings

|--|

Model parameters

f _s	0.4 ± 0.1	
m_c [GeV]	1.46 ^{+0.04} -symmetrise	$1.41^{+0.04}_{-\text{symmetrise}}$
m_b [GeV]	$\textbf{4.3} \pm \textbf{0.10}$	$\textbf{4.2} \pm \textbf{0.10}$
Q_{\min}^2 [GeV ²]	3.5 +1.5	

Parameterisation

$\mu_{ m f0}^2~[{ m GeV^2}]$	$1.9^{-0.3}_{+\mathrm{symmetrise}}$	
Additional	all missing D and E parameters	
parameters	$(D_g, E_g, D_{u_v}, D_{d_v}, E_{d_v}, E_{\bar{U}}, D_{\bar{D}}, E_{\bar{D}})$	

Scales

μ_{f}^{2}	Q^2	02 + -2
$\mu_{\rm r}^2$	$(Q^2+p_\perp^2)/2$	$Q^{\perp}+p_{\perp}^{\perp}$

Parameterisation

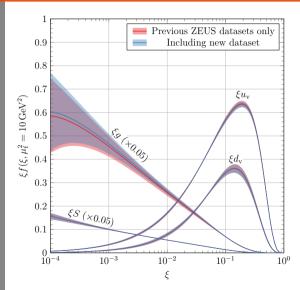
$$\begin{split} xg(x) &= A_g x^{Bg} (1-x)^{Cg} - A'_g x^{B'_g} (1-x)^{C'_g} \\ xu_v(x) &= A_{u_v} x^{B_{u_v}} (1-x)^{C_{u_v}} (1+E_{u_v} x^2) \\ xd_v(x) &= A_{d_v} x^{B_{d_v}} (1-x)^{C_{d_v}} \\ x\bar{U}(x) &= A_{\bar{U}} x^{B_{\bar{U}}} (1-x)^{C_{\bar{U}}} (1+D_{\bar{U}} x) \\ x\bar{D}(x) &= A_{\bar{D}} x^{B_{\bar{D}}} (1-x)^{C_{\bar{D}}} \end{split}$$

Constraints

 A_g determined by sum rules A_{u_v} determined by sum rules A_{d_v} determined by sum rules $C_a'=25$

$$B_{ar{U}} = B_{ar{D}}$$

 $A_{ar{U}} = A_{ar{D}}(1 - f_{s})$


QCD analysis Parton distribution functions

Jet production in DIS at ZEUS

Florian Lorkowski 2024-07-18

Measurement QCD analysis Fit settings PDFs Goodness of fit

- Perform two fits and compare PDFs:
 - HERA inclusive DIS dataset+ previous ZEUS jet datasets
 - Also include newly measured ZEUS HERA II inclusive jet datasets
- Shown is exp./fit uncertainty
- ► Gluon distribution is slightly constrained[†]
- As expected, quark distributions are not significantly affected/constrained

 $^{^{\}dagger}$ Uncertainties, especially of gluon distribution, appear larger than in HERAPDF, because $\alpha_{\rm S}(M_Z^2)$ is left free in the fit, compare e.g. fig. 4 in arXiv:2112.01120

QCD analysis Goodness of fit

Jet production in DIS at ZEUS

Florian Lorkowski 2024-07-18

Measurement QCD analysis Fit settings PDFs

	Dataset	Partial χ^2 / Number of points
	HERA NC e^+p DIS, $E_P=920\mathrm{GeV}$	447.65/377
	HERA NC e^+p DIS, $E_P=820\mathrm{GeV}$	64.99/70
	HERA NC e^+p DIS, $E_P=575\mathrm{GeV}$	219.16/254
	HERA NC e^+p DIS, $E_P=460\mathrm{GeV}$	216.58/204
	HERA NC e^-p DIS, $E_P=920\mathrm{GeV}$	219.88/159
	HERA CC e^+p DIS, $E_P=920\mathrm{GeV}$	47.52/39
	HERA CC e^-p DIS, $E_P=920\mathrm{GeV}$	51.73/42
	HERA I inclusive jets	26.38/30
	HERA I/II dijets	14.65/16
	HERA II inclusive jets	14.98/24
	Shifts of correlated systematics	96.24
	Global χ^2 per degree of freedom	1418.93/1200 = 1.182
	HERAPDF2.0 NNLO	1363/1131 = 1.205
	HERAPDF2.0Jets NNLO	1614/1348 = 1.197