Measurement of the 1-jettiness event shape observable and first observation of Empty Hemisphere Events

J. Hessler for the H1 collaboration

42nd International Conference on High Energy Physics

Prague 18.07.2024

The H1 experiment

- Data were taken from 2003 to 2007 (HERA-2)
- Electron (L = 159.6 pb-1) and positron (L = 192.0 pb-1) runs
- E_e = 27.6 GeV, E_p = 920 GeV
 → √s = 319 GeV

- Asymmetric design with trackers, calorimeter, solenoid, muon-chambers, forward & backward detectors
- Particles are reconstructed using a particle flow algorithm

 → Combining cluster and track information without doublecounting of energy

1-jettiness τ_1^{b}

$$\tau_1^b = \frac{2}{Q^2} \sum_{i \in X} \min\{xP \cdot p_i, (q+xP) \cdot p_i\}$$

- Axes: Incoming parton and (q+xP)
- Infrared safe and free of non-global logs
- Sensitive to α_s and parton shower models
- Measurement can be used for MC tuning

Equivalent expressions: DIS thrust

$$\tau_Q = 1 - \frac{2}{Q} \sum_{i \in \mathcal{H}_C} P_{z,i}^{\text{Breit}}$$

1-jettiness - Intuition

1-jettiness:

- \rightarrow Defined for every NC DIS event
- \rightarrow All particles can contribute, no jet clustering

 $\tau_1^b = \frac{2}{Q^2} \sum_{i \in X} \min\{xP \cdot p_i, (q + xP) \cdot p_i\}$

HFS particles collinear to scattered parton $_{\rightarrow}~Small~\tau_1{}^{b}$

More and larger contributions to sum over HFS \rightarrow Larger $\tau_1{}^{b}$

1-jettiness cross section

- Data unfolded using TUnfold
- Correct for QED radiation and electro-weak effects
- Resulting cross section reported for e⁻p and e⁺p collisions

Comparison with MC models

- Compare data to 16 different models
- Cross sections are measured at high precision

 \rightarrow None of the MC models works perfectly, now have precision data for tuning

 \rightarrow Exact QCD predictions have sizable scale uncertainties and large hadronisation corrections

Large cross section and sizable data statistics

\rightarrow Triple-diff. cross sections as a function of

- Virtuality $Q^2 = -(p_e p_{e'})^2$
- Inelasticity $y = (P \cdot q)/(P \cdot p_e)$
- 1-jettiness τ_1^{b}

Triple differential measurement

- Investigate change in shape of the distribution
- Integral over the τ_1^{b} distribution results in inclusive DIS cross section

Study change in shape of the distribution

- Increasing Q²
 - \rightarrow Peak moves to lower τ
 - \rightarrow Tail region lowers
- Increasing y
 - \rightarrow τ = 1 becomes enhanced

Reasonable description by various models

 $\rightarrow\,$ Study ratio to data for better comparison

Uncertainties

- Stat. uncertainties of a few to O(10%)
- Syst. uncertainties are in the range of 5-10%

MC comparison

- Ratio to Sherpa 3
- Fixed order calculations provide satisfactory description in region of validity

Comparison to other MC predictions included in backup

Double differential cross section

Integrate over τ_1^b distribution \rightarrow Inclusive DIS cross section

- Cross sections for e⁻p and e⁺p collisions
- Compare the data to fixed order calculations at NNLO and approximate N3LO accuracy

 \rightarrow Excellent agreement between data and predictions

Cross check validates τ_1^{b} measurement

Breit frame in LO and NLO

Leading order parton model

Next-to-leading order in QCD

- Empty (current) hemisphere events (EHE) appearing at NLO
- Predicted already in 1979 (link)

•
$$au_1^b = 1 - rac{2}{Q} \sum_{i \in H_C} P_{z,i}^{Breit} = 1$$

Example of an *Empty Hemisphere Event*

-- Characteristic signatures with high particle multiplicity in forward region

Inclusive DIS events and Empty Hemisphere Events

- Comparison of inclusive NC DIS events and EHEs
- More EHEs predicted in Djangoh compared to Rapgap
- Tiny background contribution
- Fraction of EHEs ~ 1%
- EHEs only occuring at low X_{Bj}

Inclusive and differential fraction

- Fraction of Empty Hemisphere Events:
 r = 0.0112±6.2%
- MC predictions envelope the data
- First observation of *Empty Hemisphere Events*

	r	δr
Data	0.0112	${\pm 3.9\%_{ m stat}}\ {\pm 4.5\%_{ m syst}}\ {\pm 1.6\%_{ m mod}}$
Djangoh 1.4 Rapgap 3.1 Pythia 8.3 Pythia 8.3 (Dire) Powheg+Pythia	$\begin{array}{c} 0.0150 \\ 0.0096 \\ 0.0127 \\ 0.0120 \\ 0.0107 \end{array}$	${\pm 0.1~\%_{ m stat}}\ {\pm 0.1~\%_{ m stat}}$
Sherpa 3.0 (Cluster) Sherpa 3.0 (Lund) Sherpa 2.2	$\begin{array}{c} 0.0100\\ 0.0101\\ 0.00818\end{array}$	$\begin{array}{c} \pm 0.1 \ \%_{\rm stat} \\ \pm 0.3 \ \%_{\rm stat} \\ \pm 0.5 \ \%_{\rm stat} \end{array}$

Table 1Comparison of the fraction r of
empty current hemisphere events in NC DIS
with various predictions in the analyzed phase
space $150 < Q^2 < 1500 \,\mathrm{GeV}^2$ and
0.14 < y < 0.7.

Summary

A first measurement of the 1-jettiness event shape observable in NC DIS was presented

- Presented single differential cross sections and in bins of y and Q²
- Reasonable description of the data by multiple models
- Integrating over τ_1^{b} results in DIS cross section
- Full publication at arXiv:2403.10109v1

First observation of Empty Hemisphere Events in DIS

- Inclusive and differential results as a function of $x_{\mbox{\tiny Bj}},\,y$ and Q^2
- Help improve and validate parton shower and hadronisation models
- Full publication at arXiv:2403.08982

 $\sigma_{(NC DIS)}$

3^{(E_c=0) /}

Backup

DIS thrust – 4π observable

- All particle candidates in all DIS events contribute
- Normalized contributions to tau1b for different ranges in polar angle and energy:

- Mainly tracks and clusters with high energy in the central part of the detector contribute
 - → Well measured particles dominate in tau1b

Comparison of data to

- Pythia 8.3
- Pythia 8.3 + Vincia
 Parton Shower
- Pyhtia 8.3 + Dire Parton Shower
- Powheg + Pythia

Ratio to Sherpa 3

- First bin overestimated by MC models
- Good agreement in peak region
- Smaller dependence on PS model at higher τ₁^b

Comparison of data to

- Herwig 7.2
- Herwig 7.2 Merging
- Herwig 7.2 Matchbox

Ratio to Sherpa 3

- Overestimates data at medium $\tau_1{}^{\text{b}}$ and small Q^2

Comparison of data to

- Sherpa 3
- Sherpa 2 (Cluster)
- Sherpa 2 (String)

Ratio to Sherpa 3

- Best description by Sherpa 3
- Effect of different hadronization model is small

Comparison of data to

- Djangoh
- Rapgap
- KaTie+Cascade (Set 1)
- KaTie+Cascade (Set 2)

Ratio to Sherpa 3

- Reasonable description of the data by Rapgap and Djangoh
- Good description of data at low τ₁^b by KaTie+Cascade but fail to describe tail region

