Precision measurements of multijet production with the ATLAS experiment

Stanislav Poláček¹, on behalf of the ATLAS Collaboration

¹Charles University in Prague

International Conference on High Energy Physics July 18–24, 2024

Introduction

- Jet measurements stringent tests of QCD
 - Strong coupling $\alpha_{\rm S}$
 - Proton structure PDFs
 - Tests of MC modeling
- ATLAS
 - Multi-purpose detector at LHC
 - Measuring jets using calorimeter energy deposits and Inner Detector particle tracks

Latest multijet measurements

- Latest multijet measurements at ATLAS
 - [1] ATLAS Collaboration, Measurements of jet cross-section ratios in 13 TeV proton-proton collisions with ATLAS, 2024, CERN-EP-2024-119
 - [2] ATLAS Collaboration, Determination of the strong coupling constant from transverse energy–energy correlations in multijet events at $\sqrt{s}=13$ TeV with the ATLAS detector, 2023, CERN-EP-2022-282
 - [3] ATLAS Collaboration, Measurements of multijet event isotropies using optimal transport with the ATLAS detector, 2023, CERN-EP-2023-079
- Using LHC Run 2 dataset of 13 TeV proton–proton collisions
 - Integrated luminosity
 - Latest value $140.07 \pm 1.17 \; \text{fb}^{-1} \; [4]$
 - Relative uncertainty 0.83%

Jet cross-section ratios [1] – observables

- Ratios between bins of inclusive jet multiplicity
 - ullet Good sensitivity to $lpha_{S}$, decrease sensitivity to systematics and PDFs
 - R₃₂, R₄₂, R₄₃, R₅₄
- In variables sensitive to
 - Energy scale e.g: $H_{T2} = p_{T,1} + p_{T,2}$
 - Topology e.g: $m_{\rm jj}$, $\Delta y_{\rm jj}$
- $p_T > 60$ GeV, |y| < 4.5, $H_{T2} > 250$ GeV

Jet cross-section ratios [1] – JES uncertainty improvement

- Jet energy scale (JES) calibration
 - Dominant source of systematic uncertainty
 - Latest jet calibration results [5, 6]
- Several recent improvements
 - Jet-flavor response dependence
 - Single hadron response extrapolation to jets
- Reduction by factor of 3 at high p_T and up to 2 at lower p_T

Jet cross-section ratios [1] – theoretical predictions

- Measurement compared to theory predictions
 - Data corrected to the particle level using unfolding procedure
- State-of-the-art NNLO prediction of 2- and 3-jet production
 - Better data description than NLO
 - Reduced scale systematic uncertainty
- Possible α_S extraction using χ^2 fit

Exctraction of α_S from TEEC [2] – observables

• Transverse energy–energy correlations (TEEC) defined as:

$$\bullet \ \ \frac{1}{\sigma}\frac{\mathrm{d}\Sigma}{\mathrm{d}\cos\phi} = \frac{1}{N}\sum_{A}^{N_{\mathrm{events}}}\sum_{ij}^{N_{\mathrm{jets}}}\frac{E_{\mathrm{T}i}^{A}E_{\mathrm{T}i}^{A}}{\left(\sum_{k}E_{\mathrm{T}k}^{A}\right)^{2}}\delta(\cos\phi-\cos\varphi_{ij})$$

- ullet Energy-weighted distribution of the ϕ differences between jet pairs
- Its asymmetry (ATEEC)
 - Defined as forward-backward difference of the TEEC
- $p_T > 60 \text{ GeV}$, |y| < 2.4, $H_{T2} > 1 \text{ TeV}$
- ullet TEEC and ATEEC measured as functions of $\cos\phi$ in H_{T2} bins

Extraction of α_S from TEEC [2] – strong coupling

- Measurement compared to the NNLO theoretical predictions
 - Allows for α_S extraction using χ^2 fit
 - Reduces theory uncertainties by factor of 3 w.r.t. NLO
- TEEC and ATEEC α_S extraction results:
 - $\alpha_{\rm S}(m_Z) = 0.1175 \pm 0.0006 ({\rm exp.})^{+0.0034}_{-0.0017} ({\rm theo.})$
 - $\alpha_{\rm S}(m_Z) = 0.1185 \pm 0.0009 ({\rm exp.})^{+0.0025}_{-0.0012} ({\rm theo.})$

Multijet event isotropies [3]

- New event shape variable event isotropy $I(\mathcal{E}) = \mathsf{EMD}(\mathcal{E},\mathcal{U})$
 - ullet Quantifying event ${\mathcal E}$ 'distance' from a symmetrical radiation pattern ${\mathcal U}$
 - Measure: Energy-Mover's Distance (EMD) used for the first time
 - ullet = minimal amount of 'work' needed to transport event $\mathcal E$ to $\mathcal E'$ of equal energy by moving energy of particles of $\mathcal E$ to particles of $\mathcal E'$
- $p_T > 60 \text{ GeV}$, |y| < 4.4, $H_{T2} > 400 \text{ GeV}$
- Events compared with 3 reference geometries
 - Cylindrical, ring-like, dipole-like
 - In bins of H_{T2} and jet multiplicity
- Useful for improving MC simulations at LHC

Conclusion

- Three multijet ATLAS measurements in 13 TeV proton-proton collisions using full LHC Run 2 dataset
- Jet cross-section ratios in jet multiplicity
 - \bullet Several improvements to the JES uncertainties \to significant reduction of the total uncertainty
 - Measurement compared to new NNLO predictions, can be used to $\alpha_{\rm S}$ extraction
- Exctraction of $\alpha_{\rm S}$ from TEEC
 - Theory uncertainty reduced by factor of 3 using NNLO predictions
 - Good agreement with previous measurements
- Multijet event isotropies
 - First application of new event shape variable
 - Comparison to 3 reference geometries
 - Useful for improving MC simulations

- ATLAS Collaboration. Measurements of jet cross-section ratios in 13 TeV proton-proton collisions with ATLAS. 2024. https://cds.cern.ch/record/2899111.
- [2] ATLAS Collaboration. Determination of the strong coupling constant from transverse energy-energy correlations in multijet events at √s = 13 TeV with the ATLAS detector. JHEP, 2307:085, 2023. http://cds.cern.ch/record/2846586.
- [3] ATLAS Collaboration. Measurements of multijet event isotropies using optimal transport with the ATLAS detector. *JHEP*, 2310:060, 2023. https://cds.cern.ch/record/2860057.
- [4] ATLAS Collaboration. Luminosity determination in pp collisions at $\sqrt{s}=13$ TeV using the ATLAS detector at the LHC. Luminosity determination in pp collisions at $\sqrt{s}=13$ TeV using the ATLAS detector at the LHC. Eur. Phys. J. C, 83(10):982, 2023. https://cds.cern.ch/record/2844887.
- [5] ATLAS Collaboration. New techniques for jet calibration with the ATLAS detector. *Eur. Phys. J. C*, 83:761, 2023. https://cds.cern.ch/record/2854733.
- [6] ATLAS Collaboration. Jet energy scale and resolution measured in proton–proton collisions at $\sqrt{s}=13$ TeV with the ATLAS detector. *Eur. Phys. J. C*, 81(8):689, 2021. https://cds.cern.ch/record/2722869.