Heavy-flavour hadron production in ATLAS

Aaron White on behalf of the ATLAS Collaboration ICHEP 2024

J/ψ and $\psi(2S)$ Cross-section Measurements

- Paper published in February: Eur. Phys. J. C 84 (2024) 169
- Summarised in an ATLAS briefing.
- ► Previous measurements:
 - ▶ 7 TeV: JHEP 2014, 79 (2014)
 - ▶ 8 TeV: Eur. Phys. J. C 76(5), 1-47, (2016)
- New in this result: higher energy, broader p_T range.

1 of 13

Overview

Motivation

- Charmonium can be produced promptly (from QCD sources) or non-promptly (from b-hadron decays).
- Prompt production is poorly modeled.
- ► The measurements presented here join a library of measurements, including those by <u>CMS</u>, <u>ALICE</u>, and <u>LHCb</u>, that can help guide theoretical models.

Four production modes:

- ► J/ψ and $\psi(2S)$
- Prompt and non-prompt production

Measurement categories:

- ▶ Double differential cross section in p_T(µµ) and |y|.
- ► Non-prompt fraction.
- ► J/ψ vs $\psi(2S)$ fraction.

Event selection

Data samples

- ▶ 2.6 fb⁻¹ sample for $p_T(\mu\mu) \in [8, 60]$ GeV → using low- p_T dimuon trigger.
 - ▶ Dimuon trigger looses efficiency at high-*p*_T.
- ▶ 140 fb⁻¹ sample for $p_T(\mu\mu) \in [60, 360]$ GeV → using **50 GeV single muon** trigger.
- ► Multiple candidates allowed per event.

Measurement bins

- ▶ 34 $p_T(\mu\mu)$ bins from 8 to 360 GeV
- ▶ 3 bins in rapidity, |y|, from 0 to 2.0.

Key observables

- Dimuon mass (distinguishes J/ψ and $\psi(2S)$).
- ▶ Pseudo-proper lifetime (distinguishes prompt and non-prompt).

Observables 1) $m_{\mu\mu}$

• Dimuon mass distribution distinguishes J/ψ and $\psi(2S)$.

 Signal modeled by combination of Gaussians and Crystal Ball functions.

 Background modeled by exponentials and polynomials.

Observables 2) τ

- **Pseudo-proper lifetime** $\tau = \frac{m_{\mu\mu}}{p_T} \frac{L_{xy}}{c}$, where L_{xy} is the distance between the primary and secondary vertex.
- Distinguishes prompt and non-prompt production.
- Prompt production modeled by delta functions.
- Non-prompt production modeled by exponentials.

All are convolved with detector resolution.

Cross-section measurement

The $m_{\mu\mu}$, τ fit is performed in bins of (p_T, y) :

- ► For prompt (P) and non-prompt (NP), and $\psi = J/\psi, \psi(2S)$: $\frac{d^2 \sigma^{\mathsf{P},\mathsf{NP}}(pp \to \psi)}{dp_T dy} \times \mathcal{B} = \frac{1}{\mathcal{A}(\psi)\epsilon_{\mathsf{trig}}\epsilon_{\mathsf{trig}}\mathsf{SF}\epsilon_{\mathsf{reco}}\epsilon_{\mathsf{reco}}\mathsf{SF}} \times \frac{N_{\psi}^{\mathsf{P},\mathsf{NP}}}{\Delta p_T \Delta y \mathcal{L}}$
- ▶ $N^{P,NP}$: yield extracted 2D fit in $m_{\mu\mu}$ and pseudo-lifetime (τ)
- $A(\psi)$: Acceptance, determined by truth variable distributions.
- ► Efficiencies: determined from simulation, including reconstruction and trigger efficiencies.
- ▶ Δp_{T} , Δy , \mathcal{L} : bin widths and integrated luminosity.

Measurements in y bins scaled for visual clarity

Differential J/ψ

Results: Differential XS for $\psi(2S)$

Results: Non-prompt fractions

▶ Increasing in low- p_T region, flat above $p_T \approx 100$ GeV.

Results: Non-prompt fractions

Aaron White

Differential J/ψ

۲

Results: $\psi(2S)$ -vs- J/ψ fractions

Non-prompt ratio

Theory comparison: prompt production

Prompt $J/\psi \rightarrow$

- NLO NRQCD: non-relativistic QCD, with corrections. Overestimate at high-p_T(μμ).
- NRQCD with k_T: takes into account transverse degrees of freedom of initial gluons. Underestimates at low-p_T(μμ).
- ICEM: improved colour evaporation model. Model that fixes individual charmonium production cross-sections.
 Overestimation at high-p_T(μμ).

Theory comparison: prompt production

Prompt $\psi(2S) \rightarrow$

- NLO NRQCD: non-relativistic QCD, with corrections. Overestimate at high-p_T(μμ).
- NRQCD with k_T: takes into account transverse degrees of freedom of initial gluons. Underestimates at low-p_T(μμ).
- ICEM: improved colour evaporation model. Model that fixes individual charmonium production cross-sections.
 Overestimation at high-p_T(μμ).

Theory comparison: non-prompt

```
Non-prompt J/\psi \rightarrow
```

- ► **FONLL**: matches NLO QCD to NLL. **Overestimates** for high $p_T(\mu\mu)$.
- <u>GM-VFNS</u>: non-purturbative fragmentation function for b.
 Overestimates for high p_T(μμ).
- <u>k</u> factorization: takes into account transverse degrees of freedom of initial gluons.

ATLAS

Summary

- ► Differential cross-section measurements are presented for prompt and non-prompt J/ψ and ψ(2S).
- These complement previous ATLAS results at higher \sqrt{s} and cover a broader p_{T} range.
- Measurement in the widest kinematic region to date.
- The non-prompt ratio and $\psi(2S)$ -vs- J/ψ ratio are provided.
- Comparisons are made with theoretical predictions, with general over-prediction of the cross-section at high-p_T.

- ► Excellent agreement with CMS and ALICE
- Complementarity areas of coverage.
- ► CMS measurement: <u>1710.11002</u>
- ► ALICE measurement: 2108.02523
- ► Note the different *y* ranges.

Aaron White