

Measurement of jet substructure with the ATLAS detector

Craig Buttar

University of Glasgow

On behalf of the ATLAS collaboration

- The relationship between primary partons and the jets observed in an event require sophisticated QCD parton shower descriptions and phenomenological hadronization models
- There is a wide range of Monte Carlos (MCs) with different PS descriptions and hadronization models, which often results in significant systematic errors on measurements
- Jet substructure measurements seek to characterize parton showers and hadronization and improve their descriptions
- ATLAS has made several measurements of the Lund Jet Plane to characterize jet substructure in light/gluon-jets, W-jets and t-jets
 - Measurement of the Lund Jet Plane for Jets Initiated by Top Quarks and W Bosons, <u>https://arxiv.org/abs/2407.10879</u>
 - Measurements of Lund subjet multiplicities in 13 TeV protonproton collisions with the ATLAS detector, <u>https://arxiv.org/abs/2402.13052</u>, submitted to PLB
 - Measurement of the Lund jet plane using charged particles in 13 TeV proton–proton collisions with the ATLAS detector, <u>Phys.</u> <u>Rev. Lett. 124 (2020) 222002</u>

S.Hoche

Hadronic jets are complex objects

Why jet substructure?

Measurement of the Lund Jet Plane in light Glasgow quark/gluon, W and top jets

ln(*R/∆R*)

The Lund Jet Plane plots the emissions through the shower, each point represents the phase space of the emission.

$$\begin{split} &z=p_t^{emission}/(p_t^{core}+p_t^{emission}) \\ &\Delta R=(y^{core}-y^{emission})^2+=(\varphi^{core}-\varphi^{emission})^2 \end{split}$$

The primary Lund Jet Plane follows the emissions of the core

- Inclusive light quark/gluon di-jets, 139fb⁻¹ at 13TeV
 - R=0.4 anti-kt jets reconstructed using particle flow objects
- Top events (semi-leptonic channel),140fb⁻¹ at 13TeV
 - R=1.0 anti-kt jets using topoclusters
 - R=0.4 anti-kt jets using particle flow object
- Recluster tracks in jets using C/A to produce track-based jets
 - R=0.4 for jets, R=1.0 for t-jets
 - t-jets: M_{jet} > 140GeV, dR_{jb} < 1.0
 - W-jets: M_{jet} 60-100GeV, b-tagged jet
- Decluster jets using C/A algorithm by reversing the clustering to identify emissions – measure density of emissions in Lund Jet Plane
- The total uncertainty on the LJP density is dominated by the modelling of the ttbar signal
- Use tracks to reconstruct charged particle jets
 - Improved resolution better granularity than calorimeters
 - Reduce impact of pile-up by associating tracks to primary vertex

University
GlasgowLund Jet Plane in light quark/gluon, Wand top jets

Lund jet plane structure clearly seen:

Soft collinear and hard colinear in light quark/gluon jets, W-jets and t-jets

Hard wide-angle jets observed in W-jets and t-jets

 $<N_{Lund}^{Primary}>W-jets=6.02\pm0.04$ (stat.) ±0.22 (syst.); top-jets=6.74 ±0.02 (stat.) ±0.13 (syst.)

Lund Jet Plane in light quark/gluon, W and top jets

W-jets			
$\begin{bmatrix} \mathbf{N} \\ \mathbf{N} \end{bmatrix} = \mathbf{ATLAS} \text{ Internal} \qquad (\mathbf{s} = 13 \text{ TeV}, 140 \text{ fb}^{-1} - \mathbf{s}^{-1} \\ \mathbf{S} = \mathbf{L} \text{ und Jet Plane, Unfolded Data vs. MC, } W \text{ jets} $			
Data Powheg+Pythia8 (p=0.08) aMCatNLO+Pythia8 (p=0.07) Sherpa2.2.10 (p=0.46) Pow.+Py.8 MEC off (p=0.04) Pow.+Py.8 MET (p=0.13) Stat. Uncertainty Stat.+Syst. Uncertainty			
1.2 1.5 2.5 3.5 3.5 4 4.5 $\ln(R/\Delta R)$			

Sample name	χ^2	χ^2/NDF (NDF=132)	<i>p</i> -value [%]
Powheg + Pythia 8	149	1.13	15
aMCatNLO + Pythia 8	149	1.13	14
Sherpa 2.2.10	139	1.05	33
Powheg + Herwig 7.0	169	1.28	2
Powheg + Herwig 7.2	165	1.25	3
Powheg + Herwig 7.1	150	1.14	14
Powheg + Pythia 8 MEC Off	176	1.34	1
Powheg + Pythia 8 RTT	145	1.10	20
Powheg + Pythia 8 FSR UP	148	1.12	17
Powheg + Pythia 8 FSR DOWN	162	1.23	4

Global p-values for top-jets W-jets all have p-values < 1

ln(1/z) UE, MP collineat hard & wide hard

- Measurement shows good discrimination between different MCs •
- Globally: Good agreement between data and some MCs for t-jets •
- Globally: W-jets are not well described by any generator (p-values <1%), better ulletagreement in sub-regions
- Best agreement between data and Sherpa 2.1.10

collinea

Lund Jet Plane in light quark/gluon, W and top jets

- Focus on Powheg and Herwig and Powheg and Pythia
- Discrimination between different versions of Herwig
- Powheg+Pythia8 (FSR down) shows the most significant disagreement with data, both globally and in both ln(1/z) and ln(R/dR) slices

- Plane defined by k_t and ΔR

versity

- $k_t = p_t^{emission} \Delta R(p_t^{core}, p_t^{emission})$
- Subjet multiplicity = number emissions with k_t > k_t-cut
- Subjet multiplicity has been measured for both primary and full Lund Jet Planes

- Light quark/gluon di-jets
 - 140fb⁻¹ at 13TeV
 - R=0.4 anti-kt jets reconstructed using particle flow objects
- Recluster tracks in R=0.4 jets using C/A to produce track-based jets
- Decluster jets using C/A algorithm by reversing the clustering to identify emissions apply cut in $k_{\rm t}$

- For perturbative region k_t>10.0GeV the different PS show similar levels of agreement/disagreement for both the full Lund jet plane and the primary Lund jet plane
- Herwig with angular ordering gives the best agreement. Sherpa and Powheg+Pythia show increasing disagreement with increasing multiplicity for both the full LJP and primary LJP Measurement of jet substructure with the ATLAS detector

- k_t>1GeV sensitive to non-perturbative effects
- Overall Herwig angular ordered agrees well with data except for high multiplicity region in full LJP. Agrees well over the full multiplicity range for primary LJP
- Sherpa (2.2.5 & DIRE) agrees better at high multiplicity in the full LJP and primary LJP

- Comparison to NLO matched to NNLL resummation (<u>R. Medves, A. Soto-Ontoso and G. Soyez</u>)
- Non-perturbative added using (hadron level+MPI)/(PS without MPI), introduces a large error at low k_t
- Agreement of central value with data is good in the low multiplicity region for low pt jets, comparable to MCs
- Agreement is less good for higher pt jets but within uncertainties, and competitive with MCs.
- For small k_t agreement is poor but it is within theoretical error.

- Measurements of jet substructure using the Lund Jet Plane can discriminate between different ME-matching, parton shower and hadronization models in MCs
- Measurements of Primary Lund Jet Plane in light quark/gluon, W and t-jets show the expected structure of parton showers and heavy particle decays
- Level of agreement and disagreement between data and different MCs varies both globally and in different regions of the Lund Jet plane
- Measurements of Lund subjet multiplicities show similar levels of agreement/disagreement between data and different MCs in both the full and primary Lund Jet Planes
- Lund subjet multiplicities can be described by NLO matched to NNLL resummation in perturbative regions
- Lund jet plane analysis has been used with graph neural networks to develop new taggers for W/top or q/g jet tagging <u>PHYS-PUB-2023-017</u>.

Backup/notes

Lund Jet Plane in light quark/gluon, W and top jets

