Exploring the $\Lambda(1520)$ resonance in high-multiplicity proton–proton collisions at LHC energies with ALICE Sonali Padhan (On behalf of ALICE Collaboration)

Email- sonali.padhan@cern.ch

Introduction

- Hadronic resonances serve as crucial probes for investigating the hadronic phase in ultrarelativistic heavy-ion collisions due to their lifetime being comparable with its duration.
- A significant suppression in yield is observed for $K^{*0}(892)$ and $\Lambda(1520)$ in Pb-Pb collisions whereas only $K^{*0}(892)$ shows suppression in small systems.
- $\Lambda(1520)$ resonance whose lifetime (~ 13 fm/c) lies between $K^{*0}(\sim 4 \text{ fm}/c)$ and ϕ (~ 42 fm/c) offers unique insights into the characteristics of the hadronic phase [1][2][3].

3. Results

<u>a) p_T spectra</u>

- Lower panel shows the ratio to 0-100% multiplicity class by taking uncorrelated systematic uncertainty
- In small system, the spectral shape changes and gets harder with increasing multiplicity.
- These effects are similar to those observed in heavy-ion collisions that are typically interpreted as flow-like effects.

Enhancement of strange hadron production [4] and ridge structure in high multiplicity pp collisions [5] suggesting potential QGP-like effects in small system.

Studying the $\Lambda(1520)$ resonance helps understand its suppression in heavy-ion collisions and its potential presence in high-multiplicity pp collisions.

ichep2024.org

PRAGUE