Jet substructure measurements at CMS

ICHEP 2024: 42nd International Conference on High Energy Physics 18 – 24 July 2024, Prague (Czech Republic)

Jindrich Lidrych (Universite Catholique de Louvain) on behalf of the CMS Collaboration

Introduction

What is jet substructure?

 Jet constituents are mapped onto physically meaningful observables

• Provides numerous innovative ways to probe the Standard Model in extreme regions of phase space

 Experimental precision to challenge state-of-the-art pQCD analytical calculations and to constrain parton shower and hadronization model of MC generators

Subset of hadrons

Outline

In this talk:

• Measurement of the primary Lund jet plane density in proton-proton collisions at \sqrt{s} = 13 TeV JHEP 05 (2024) 116

• Measurement of energy correlators inside jets and determination of the strong coupling $\alpha_S(m_Z)$ SMP-22-015, accepted by PRL

Primary Lund jet plane

- 2D representation of the phase-space of $1 \rightarrow 2$ splitting
- Internal structure of jets iterative jet declustering using the Cambridge-Aachen algorithm
- Primary Lund jet (PLJ) plane emissions obtained by declustering the harder subjet at each step of the declustering process
- Provides information about the radiation pattern of the jet

Primary Lund jet plane

- Measurement based on full Run 2 dataset
- Inclusive jet selection
 - Jet $p_{\rm T}$ > 700 GeV and |y| < 1.7
 - anti- k_T with small R=0.4 and large R=0.8
- · Charge particle of the jet are used for LJP
- Unfolding by D'Agostini method to particle level
- Systematic uncertainties:
 - Shower and hadronization: 2-7% in bulk
 - Tracking eff.: 1-2% in bulk, 10-20% at edge
 - Subleading components (< 1%):
 - Parton shower scale, Jet energy scale and resolution, pileup

Jindrich Lidrych | 18th July 2024 | ICHEP 2024

Primary Lund jet plane

- Comparison of unfolded LJP density with various MC predictions
 - Different parton showers, hadronization, colour reconnection, and underlying event effects
- Differences between data & MC of the order of 10-20%
- Better agreement with Herwig7 and Sherpa predictions based on cluster fragmentation model

Jindrich Lidrych | 18th July 2024 | ICHEP 2024

- Multiparticle energy correlators describe the correlations of kinematic properties of particles within the jet
- Two and three-particle energy correlators

$$E2C = \sum_{i,j}^{n} \int d\sigma \frac{E_i E_j}{E^2} \delta(x_L - \Delta R_{ij})$$

$$E3C = \sum_{i,j,k}^{n} \int d\sigma \frac{E_i E_j E_k}{E^3} \delta(x_L - max(\Delta R_{ij}, \Delta R_{ik}, \Delta R_{jk}))$$

 x_L - the largest distance ΔR_{ij} between constituents

- Mapping out different stages of jet formation:
 - Small angle is dominated by hadronization
 - Large angle is dominated by short distance physics

- Measurement based on 2016 dataset: 36.3 fb⁻¹
- Inclusive dijet selection
 - PF CHS jet, anti-k_T with R=0.4 and $|\eta| < 2.1$, 8 p_T region in 97 1784 GeV
 - Neutral & charged particles with $p_{\rm T}$ > 1 GeV
 - All particles included, direct comparison with theoretical calculation

- Experimental syst. unc.:
 - Unfolding model
 - Neutral, photon, charged particle energy scale
 - Jet energy scale and resolution
 - Pileup, tracking eff.
- Theory syst. unc.:
 - QCD scale in parton shower
 - QCD scale in hard scattering
 - Underlying event + PS tune
 - PDF
- Differences between data & MC of the order of 10%

- Benefit of taking ratio
 - Exp. syst.: ~8% → ~ 3%
- Data/MC difference reduced
 ~10% → ~ 3%
- Better agreement with models
- Slope of E3C/E2C decreases with increasing jet $p_{\rm T}$

- Ratio of E3C and E2C as a function of x_L can be used to extract the strong coupling $\alpha_S(m_Z)$
- Theoretical predictions of the ratio at NLO + $NNLL_{approx}$
- Most precise extraction of $\alpha_S(m_Z)$ with jet substructure $\alpha_S(m_Z) = 0.1229^{+0.0040}_{-0.0050}$
- More details in Patrick's talk

Conclusion

- Jet substructure measurements explore the basic building blocks of QCD
- Jet substructure measurements can be used to improve MC event generators
- Jet substructure measurements can be used to determine the strong coupling $\alpha_S(m_Z)$
- More measurements are coming. Stay tuned!