

The inclusion of QED corrections in the NNPDF4.0 fitting framework

Niccolò Laurenti, on behalf of the NNPDF collaboration Based on [2401.08749]

ICHEP24, Prague, 18/07/2024

Istituto Nazionale di Fisica Nucleare

Outline

PDFs fitting

How to add QED effects

Results

PDFs fitting

PDFs fitting

How to add QED effects

Results

.11/ Impact on phenomenology

How do we compute observables in HEP?

What are the PDFs?

Deep inelastic scattering (DIS)

$$\sigma = \sum_{i} \hat{\sigma}_{i} \otimes f_{i} + \mathcal{O}(\Lambda^{2}/Q^{2})$$

- How are the PDFs fitted?
- We have to define a theory
- We have to choose a dataset
- We have to choose a fitting methodology

How to add QED effects

How to add QED effects

Results

Impact on phenomenology

- Why do we want to add QED effects in PDFs?
- Are there cases in which they are not negligible?

How is the photon PDF determined?

 LuxQED gives a constraint between the photon PDF and the QCD PDFs

LuxQED approach

$$x\gamma(x,\mu^{2}) = \frac{1}{2\pi\alpha(\mu^{2})} \int_{x}^{1} \frac{dz}{z} \left\{ \int_{\frac{m_{p}^{2}z^{2}}{1-z}}^{\frac{\mu^{2}}{1-z}} \frac{dQ^{2}}{Q^{2}} \alpha^{2}(Q^{2}) \left[-z^{2}F_{L}(x/z, + (zP_{\gamma q}(z) + \frac{2x^{2}m_{p}^{2}}{Q^{2}})F_{2}(x/z, Q^{2}) \right] - \alpha^{2}(\mu^{2})z^{2}F_{2}(x/z, \mu^{2}) \right\}$$

 $F_{2,L} = \sum C_{2,L,i} \otimes f_i$

It modifies the sum rules

 $dx\,x\left(\Sigma(x,Q^2)+g(x,Q^2)+\gamma(x,Q^2)\right)=1$

- How are DGLAP equations in presence of QED corrections?
- The photon PDF mixes with the other PDFs through evolution

$$\mu^{2} \frac{d}{d\mu^{2}} f_{i}(x,\mu^{2}) = \sum_{j=q,\bar{q},g,\gamma} \int_{x}^{1} \frac{dz}{z} P_{ij}\left(\frac{x}{z},\alpha_{s}(\mu^{2}),\alpha(\mu^{2})\right) f_{j}(x,\mu^{2})$$

$$i = q,\bar{q},g,\gamma$$

$$P_{ij}(\alpha_{s},\alpha) = P_{ij}^{\text{QCD}}(\alpha_{s}) + \tilde{P}_{ij}(\alpha_{s},\alpha)$$

$$pure \text{ QCD terms}$$

$$pure \text{ QCD terms}$$

$$P_{ij}^{\text{QCD}}(\alpha_{s}) = \frac{\tilde{P}_{ij}^{\text{QCD}}(\alpha_{s},\alpha)}{\alpha_{s}P_{ij}^{(0)} + \alpha_{s}^{2}P_{ij}^{(1)} + \alpha_{s}^{3}P_{ij}^{(2)} + \dots}$$

$$\tilde{P}_{ij}^{(0,1)} + \alpha_{s}\alpha P_{ij}^{(1,1)} + \alpha^{2}P_{ij}^{(0,2)}$$

The QED case is more difficult to solve than the pure QCD one (backup)

erms

• What is the fitting methodology?

 LuxQED formula gives a constraint between γ and the other PDFs: such constraint is implemented iteratively

Computed at 100 GeV and evolved back to fitting scale with DGLAP [Manohar, Nason, Salam, Zanderighi, 2017]

(backup)

Results

PDFs fitting

How to add QED effects

Results

Results at fitting scale

 Very small differences in the quarks and gluon

- Results at 100 GeV
- Difference grows due to the effect of the photon in the evolution

- Photon PDF:
- Difference with NNPDF3.1QED is less than percent
- Percent difference with the other photon PDFs from the latest QED fits

Impact on phenomenology

How to add QED effects

Results

- There are regions in which QED effects are not negligible
- Difference is at the level of few percent
- Photon in subtracting momentum from the other PDFs

- There are regions in which QED effects are not negligible
- Difference is at the level of few percent
- Photon in subtracting momentum from the other PDFs

Summary and Outlook

How to add QED effects

Results

Summary and Outlook

We can add QED corrections to PDF fitting, getting a photon PDF

Mathematical Content The photon PDF is compatible with the most recent QED fits

Quarks and gluon are almost unchanged (the photon PDF is small)

There are processes in which photon initiated contributions are not negligible

Thank you for your attention!

Backup slides

How to add QED effects

Results

.11 Impact on phenomenology

• Theory

 What defines the theory of a fit?

p.o.= perturbative order

• Dataset

• Which data points are included in the fit?

4618 data points from different processes

Methodology

How are the PDFs extracted?

Solving DGLAP

$$q^{\pm} = q \pm q$$

$$\begin{aligned} \mathbf{QCD} \otimes \mathbf{QED} \ \mathbf{case} \\ \mu^{2} \frac{d}{d\mu^{2}} \begin{pmatrix} g \\ \gamma \\ \Sigma \\ \Sigma_{\Delta} \end{pmatrix} = \mathbf{P}_{s} \otimes \begin{pmatrix} g \\ \gamma \\ \Sigma \\ \Sigma_{\Delta} \end{pmatrix} \\ \mu^{2} \frac{d}{d\mu^{2}} \begin{pmatrix} V \\ V_{\Delta} \end{pmatrix} = \mathbf{P}_{v} \otimes \begin{pmatrix} V \\ V_{\Delta} \end{pmatrix} \\ \mu^{2} \frac{d}{d\mu^{2}} f_{ns,\pm}^{u/d} = \left(P_{ns,\pm} + \tilde{P}_{ns,\pm}^{u/d} \right) \otimes f_{ns,\pm}^{u/d} \\ \mu^{2} \frac{d}{d\mu^{2}} f_{ns,\pm}^{u/d} = \left(P_{ns,\pm} + \tilde{P}_{ns,\pm}^{u/d} \right) \otimes f_{ns,\pm}^{u/d} \\ \int_{x_{\pm}}^{u_{\pm}} \left\{ u^{\pm} - c^{\pm} \\ u^{\pm} + c^{\pm} - 2t^{\pm} \\ F_{ns,\pm}^{u} = \left\{ u^{\pm} - s^{\pm} \\ d^{\pm} + s^{\pm} - 2b^{\pm} \\ \Sigma_{\Delta} = \frac{n_{d}}{n_{u}} \sum_{i=1}^{n_{u}} u_{i}^{+} - \sum_{i=1}^{n_{d}} d_{i}^{+} \\ V_{\Delta} = \frac{n_{d}}{n_{u}} \sum_{i=1}^{n_{u}} u_{i}^{-} - \sum_{i=1}^{n_{d}} d_{i}^{-} \end{aligned}$$

Solving DGLAP

 $\mathbf{P_{s}} = \begin{pmatrix} P_{gg} + \tilde{P}_{gg} & \tilde{P}_{g\gamma} & P_{gq} \\ \tilde{P}_{\gamma g} & \tilde{P}_{\gamma \gamma} \\ 2n_{f}(P_{qg} + \langle \tilde{P}_{qg} \rangle) & 2n_{f}\langle \tilde{P}_{q\gamma} \rangle & P_{qq} + \langle \tilde{P}_{qq}^{T} \rangle \\ 2n_{f}\nu_{d}\tilde{P}_{\Delta qg} & 2n_{f}\nu_{d}\tilde{P}_{\Delta q\gamma} & \nu_{d}\tilde{P}_{\Delta q\gamma}^{ns,+} - 2n_{f}\nu_{d}\tilde{P}_{\Delta q\gamma}^{ns,+} - 2n_{f}\nu_{d}$

 $\mathbf{P}_{\mathbf{v}} = \begin{pmatrix} P_{\mathrm{ns},V} + \langle \tilde{P}_{q}^{\mathrm{ns},-} \rangle & \nu_{u} \tilde{P}_{\Delta q}^{\mathrm{ns},-} \\ \tilde{D}^{\mathrm{ns},-} & \mathcal{D} & \cup (\tilde{D}^{\mathrm{ns},-}) \end{pmatrix}$

$$\begin{split} \chi_{q} + \langle \tilde{P}_{gq} \rangle & \nu_{u} \tilde{P}_{g\Delta q} \\ \langle \tilde{P}_{\gamma q} \rangle & \nu_{u} \tilde{P}_{\gamma \Delta q} \\ \delta^{\text{ins},+}_{q} \rangle + \langle e_{q}^{2} \rangle^{2} \tilde{P}_{\text{ps}} & \nu_{u} \tilde{P}^{\text{ns},+}_{\Delta q} + \nu_{u} e_{\Delta q}^{2} \langle e_{q}^{2} \rangle \tilde{P}_{\text{ps}} \\ + \nu_{d} e_{\Delta q}^{2} \langle e_{q}^{2} \rangle \tilde{P}_{\text{ps}} & P_{\text{ns},+} + \{ \tilde{P}^{\text{ns},+}_{q} \} + \nu_{u} \nu_{d} (e_{\Delta q}^{2})^{2} \tilde{P}_{\text{ps}} \end{pmatrix} \end{split}$$

Solution of the non-diagonal sectors

$$\mathbf{E}_{S}(\mu^{2} \leftarrow \mu_{0}^{2}) = \mathscr{P}\exp\left(-\int_{\log \mu_{0}^{2}}^{\log \mu^{2}} \gamma_{S}(\alpha_{s}(\mu^{2}), \alpha(\mu^{2})) d\log \mu^{2}\right) \simeq \prod_{k=0}^{n-1} \mathbf{E}_{S}(\mu^{2(k+1)} \leftarrow \mu^{2(k)})$$

$$\gamma(N) = -\int_0^1 dz \, z^{N-1} P(z)$$

$$\mathbf{E}_{S}(\mu^{2(k+1)} \leftarrow \mu^{2(k)}) = \exp\left(-\gamma_{S}(\alpha_{s}(\mu^{2(k+1/2)}), \alpha(\mu^{2(k+1/2)}))\Delta \log \mu^{2(k)}\right)$$

Solved in Mellin space

$$\log \mu^{2(k+1/2)} = \frac{\log \mu^{2(k+1)} + \log \mu^{2(k)}}{2}$$

$$-\mu^{2(n)} = \mu^2$$

$$\Delta \log \mu^{2(k)} = \log \mu^{2(k+1)} - \log \mu$$

Computation of the photon

Why the LuxQED formula is used at 100 GeV?

LuxQED neglects higher twist corrections $\mathcal{O}\left(\frac{\Lambda}{\mu}\right)$

For low μ , the integral is dominated by low Q^2 structure functions **non-perturbative!**

