Determination of $lpha_s$ from azimuthal correlations among jets at CMS

Paris Gianneios on behalf of the CMS Collaboration

Parallel session talk - Strong Interactions and Hadron Physics July 18, 2024

Outline

Introduction - Motivation

- 2 $R_{\Delta\phi}$ observable definition and event selection
- (3) $R_{\Delta\phi}$ measurement with CMS
- 4 Fixed Order pQCD predictions
- 5 Determination of $\alpha_s(m_z)$ and $\alpha_s(Q)$ evolution

Talk based on ►arXiv: 2404.16082 * * Accepted by EPJC CMS.

Multijet cross section ratios

Goals

- **①** Determination of the strong coupling constant $\alpha_s(m_z)$.
- 2 Investigation of the energy scale (Q) dependence $\alpha_s(Q)$.

CMS

Multijet cross section ratios

Goals

ULB

- **①** Determination of the strong coupling constant $\alpha_s(m_z)$.
- 2 Investigation of the energy scale (Q) dependence $\alpha_s(Q)$.

Observables: Ratios (R) with

• Denominator: topologies with at least 2-jets ($\sim \alpha_s^2$ @LO).

 α_{s} from azimuthal correlations among jets at CMS

Introduction - Motivation

CMS

Multijet cross section ratios

Goals

ULB

UNIVERSITÉ

DE BRUXELLES

LIBRE

- **①** Determination of the strong coupling constant $\alpha_s(m_z)$.
- 2 Investigation of the energy scale (Q) dependence $\alpha_s(Q)$.

Observables: Ratios (R) with

- Denominator: topologies with at least 2-jets ($\sim \alpha_s^2$ @LO).
- Numerator: topologies with at least 3-jets ($\sim lpha_s^3$ @LO).

 α_{s} from azimuthal correlations among jets at CMS

Introduction - Motivation

CMS

Multijet cross section ratios

Goals

ULB

UNIVERSITÉ

DE BRUXELLES

LIBRE

- **①** Determination of the strong coupling constant $\alpha_s(m_z)$.
- 2 Investigation of the energy scale (Q) dependence $\alpha_s(Q)$.

Observables: Ratios (R) with

- Denominator: topologies with at least 2-jets ($\sim \alpha_s^2$ @LO).
- Numerator: topologies with at least 3-jets ($\sim lpha_s^3$ @LO).

Benefits

- $\checkmark\,$ Reduction/cancellation of systematic effects e.g. luminosity.
- \checkmark Reduction of theoretical uncertainties e.g. non-perturbative.

Paris Gianneios (ULB)

ULB

Goals

Benefits

~

LIBRE

CMS

UNIVERSITÉ

Event selection - α_s sensitivity

Experimental data

- Full Run 2: $\mathcal{L}_{int} = 134 \text{ fb}^{-1}$
- Event sample with jets:
 - anti- $k_{\rm T}$ with ${\rm R}=0.7$
 - $\rm p_T > 50~GeV$, |y| < 2.5
- Numerator selection criteria:

$$- (\Delta \phi_{\min}, \Delta \phi_{\max}) = (2\pi/3, 7\pi/8)$$

 $- p_{\text{Tmin}}^{\text{nbr}} = 100 \text{ GeV}$

Results from: • arXiv: 2404.16082

Event selection - $lpha_s$ sensitivity

Experimental data

- Full Run 2: $\mathcal{L}_{int} = 134 \text{ fb}^{-1}$
- Event sample with jets:
 - anti- $k_{\rm T}$ with R=0.7
 - $\rm p_T > 50~GeV$, |y| < 2.5
- Numerator selection criteria:

$$- (\Delta \phi_{\min}, \Delta \phi_{\max}) = (2\pi/3, 7\pi/8)$$

- $p_{\text{Tmin}}^{\text{nbr}} = 100 \text{ GeV}$

Theoretical predictions

- Fixed-Order predictions pQCD @NLO.
- NLOJet++ (up to 3 jets @NLO)
- Using the **fastNLO** framework.

•
$$\mu_{
m R} = \mu_{
m F} = {f \hat{H}_{
m T}}/2$$
, with $\hat{
m H}_{
m T} = \sum_{i\in {\sf partons}} {
m p}_{{
m T},i}$

Results from: • arXiv: 2404.16082

Event selection - $lpha_s$ sensitivity

Experimental data

- Full Run 2: $\mathcal{L}_{int} = 134 \text{ fb}^{-1}$
- Event sample with jets:

UNIVERSITÉ

DE BRUXELLES

LIBRE

ULB

- anti- $k_{\rm T}$ with R=0.7
- $\mathrm{p_T} > 50~\mathrm{GeV}$, |y| < 2.5
- Numerator selection criteria:

$$-(\Delta \phi_{\min}, \Delta \phi_{\max}) = (2\pi/3, 7\pi/8)$$

 $- p_{\text{Tmin}}^{\text{nbr}} = 100 \text{ GeV}$

Theoretical predictions

- Fixed-Order predictions pQCD @NLO.
- NLOJet++ (up to 3 jets @NLO)
- Using the **fastNLO** framework.

•
$$\mu_{
m R} = \mu_{
m F} = {f \hat{H}_{
m T}}/2$$
, with $\hat{
m H}_{
m T} = \sum_{i\in {\sf partons}} {
m p}_{{
m T},i}$

 $R_{\Delta\phi}$ observable has large sensitivity to $\alpha_s.$

Measurement: uncertainties

- Statistical (0.18 10.49 %): from the covariance matrix *after* unfolding.
- JES (0.65 5.00 %): Jet Energy Scale uncertainty sources $\rightarrow p_T = p_T (1 \pm \text{unc. source})$.
- JER $(0.04 0.77 \ \%)$: Jet Energy Resolution smearing process applied to MC samples.
- Other (< 1%): Prefiring corrections, PU profile reweighting, MC modeling.

Paris Gianneios (ULB)

UNIVERSITÉ

DE BRUXELLES

LIBRE

ULB

Theoretical predictions

A NNLO predictions not yet available for $\mathbf{R}_{\Delta\phi}$!

A NNLO predictions not yet available for $R_{\Delta\phi}$!

- Fixed Order predictions up to NLO in pQCD
 - 4 different NLO PDF sets.
- PDF uncertainties
 - 68% CL Hessian/MC methods.
- Scale uncertainties

$$-rac{1}{2} \leq \mu_{
m R}/\mu_{
m F} \leq 2$$

PDFs available via	LHAPDF
--------------------	--------

PDF set	Default $\alpha_s(m_z)$	Alternative $\alpha_s(m_z)$
ABMP16	0.1191	0.114 - 0.123
CT18	0.1180	0.110 - 0.124
MSHT20	0.1200	0.108 - 0.130
NNPDF3.1	0.1180	0.106 - 0.130

Theoretical predictions

A NNLO predictions not yet available for $\mathbf{R}_{\Delta\phi}$!

- Fixed Order predictions up to NLO in pQCD
 - 4 different NLO PDF sets.
- PDF uncertainties

UNIVERSLTÉ

DE BRUXELLES

LIBRE

ULB

- 68% CL Hessian/MC methods.
- Scale uncertainties

 $-\frac{1}{2} \leq \mu_{\rm R}/\mu_{\rm F} \leq 2$

NLO scale uncertainties

(3-jet) Numerator : 9 - 17 % (2-jet) Denominator : 5 - 10 %

PDFs available via LHAPDF						
PDF set	Default $\alpha_s(m_z)$	Alternative $\alpha_s(m_z)$				
ABMP16	0.1191	0.114 - 0.123				
CT18	0.1180	0.110 - 0.124				
MSHT20	0.1200	0.108 - 0.130				
NNPDF3.1	0.1180	0.106 - 0.130				

July 18, 2024

Non-Perturbative corrections

• Fixed Order pQCD predictions are available at parton level only: non-perturbative (NP) corrections account for multiple parton interactions (MPI) and hadronization (HAD) effects:

Non-Perturbative corrections

- Fixed Order pQCD predictions are available at parton level only: non-perturbative (NP) corrections account
- for multiple parton interactions (MPI) and hadronization (HAD) effects:

- NP correction factors:
$$C^{NP} = \frac{1}{2}$$

$$C^{\rm NP} = \frac{\sigma^{\rm PS+MPI+HAD}}{\sigma^{\rm PS}}$$

- Simple polynomial function $a + b \cdot p_T^c$ for the parametrization of C^{NP} .
- Envelope from the predictions of the different MC event generators. _

CMS.

Non-Perturbative corrections

CMS

- Fixed Order pQCD predictions are available at parton level only: non-perturbative (NP) corrections account for multiple parton interactions (MPI) and hadronization (HAD) effects:
 - NP correction factors:

$$c^{\rm NP} = \frac{\sigma^{\rm PS+MPI+HAD}}{\sigma^{\rm PS}}$$

- Simple polynomial function $a + b \cdot p_T^c$ for the parametrization of C^{NP} .
- Envelope from the predictions of the different MC event generators.

ULB ULB LIBRE DE BRUXELLES

- Fixed Order pQCD predictions are also corrected for the ElectroWeak (EW) effects.
- Full NLO corrections to 3-jet production and R₃₂ at the LHC
 - M. Reyer, M. Schönherr, S. Schumann arXiv:1902.01763 $\rightarrow \mathcal{O}(\alpha_s^n \alpha^m)$, with n + m = 2 and n + m = 4.

- Fixed Order pQCD predictions are also corrected for the ElectroWeak (EW) effects.
- Full NLO corrections to 3-jet production and R₃₂ at the LHC
- M. Reyer, M. Schönherr, S. Schumann $ightarrow arXiv:1902.01763
 ightarrow \mathcal{O}(\alpha_s^n \alpha^m)$, with n+m=2 and n+m=4.

Determination of $\alpha_s(m_z)$

- Agreement between data and theory (within the uncertainties) for all the PDF sets.
- Uncertainties: PDF: 1 2%, Scale: 2 8%

Paris Gianneios (ULB)

10 / 13

UNIVERSITÉ

DE BRUXELLES

LIBRE

ULB

- Agreement between data and theory (within the uncertainties) for all the PDF sets.
- Uncertainties: PDF: 1 2 %, Scale: 2 8 %

Paris Gianneios (ULB)

July 18, 2024

Determination of $\alpha_s(m_z)$

• Minimization of:

$$\chi^2 = \sum_{ij}^{N} (D_i - T_i) C_{ij}^{-1} (D_j - T_j)$$

- **N**: number of measurements
- **D**_i: experimental data
- T_i: theoretical predictions
- Cij: covariance matrix
- Covariance matrix composition:

 $C_{ij} = C_{uncor} + C_{exp} + C_{theo}$

 C_{uncor} : numerical precision of FO predictions C_{exp} : all the experimental uncertainties C_{theo} : all the theoretical uncertainties

UNIVERSITÉ LIBRE DE BRUXELLES

α _s	(m _z)
	_

PDF set	$\alpha_s(\mathrm{m_z})$	Exp	NP	PDF	EW	Scale	Total	χ^2/n_{dof}
ABMP16	0.1197	0.0008	0.0007	0.0007	0.0002	$^{+0.0043}_{-0.0042}$	$+0.0045 \\ -0.0044$	16/16
СТ18	0.1159	0.0013	0.0009	0.0014	0.0002	$+0.0099 \\ -0.0067$	$+0.0101 \\ -0.0070$	19/16
MSHT20	0.1166	0.0013	0.0008	0.0010	0.0003	$+0.0112 \\ -0.0063$	$^{+0.0114}_{-0.0066}$	17/16
NNPDF3.1	0.1177	0.0013	0.0011	0.0010	0.0003	$^{+0.0114}_{-0.0068}$	$^{+0.0116}_{-0.0071}$	20/16

UNIVERSITÉ LIBRE DE BRUXELLES

		° 2						
PDF set	$\alpha_s(\mathrm{m_z})$	Exp	NP	PDF	EW	Scale	Total	χ^2/n_{dof}
ABMP16	0.1197	0.0008	0.0007	0.0007	0.0002	+0.0043 -0.0042	$^{+0.0045}_{-0.0044}$	16/16
СТ18	0.1159	0.0013	0.0009	0.0014	0.0002	+0.0099 -0.0067	$^{+0.0101}_{-0.0070}$	19/16
MSHT20	0.1166	0.0013	0.0008	0.0010	0.0003	+0.0112 -0.0063	$^{+0.0114}_{-0.0066}$	17/16
NNPDF3.1	0.1177	0.0013	0.0011	0.0010	0.0003	+0.0114 - 0.0068	$^{+0.0116}_{-0.0071}$	20/16

• Extracted $\alpha_s(m_z)$ are compatible among each other within the uncertainties.

Paris Gianneios (ULB)

 $\alpha_{\rm s}$ from azimuthal correlations among jets at CMS

UNIVERSITÉ LIBRE DE BRUXELLES

PDF set	$\alpha_s(\mathrm{m_z})$	Exp	NP	PDF	EW	Scale	Total	χ^2/\textit{n}_{dof}
ABMP16	0.1197	0.0008	0.0007	0.0007	0.0002	+0.0043 -0.0042	$+0.0045 \\ -0.0044$	16/16
СТ18	0.1159	0.0013	0.0009	0.0014	0.0002	+0.0099 -0.0067	$^{+0.0101}_{-0.0070}$	19/16
MSHT20	0.1166	0.0013	0.0008	0.0010	0.0003	+0.0112 -0.0063	+0.0114 -0.0066	17/16
NNPDF3.1	0.1177	0.0013	0.0011	0.0010	0.0003	$+0.0114 \\ -0.0068$	$^{+0.0116}_{-0.0071}$	20/16

• Scale uncertainties (theoretical) by far the dominant: 4 - 10 %.

Paris Gianneios (ULB)

 $\alpha_{\rm s}$ from azimuthal correlations among jets at CMS

July 18, 2024

11/13

CMS

• Results also compatible with the world average: $\alpha_s(m_z) = 0.1180 \pm 0.0009$.

Paris Gianneios (ULB)

UNIVERSITÉ

DE BRUXELLES

LIBRE

ULB

 α_s from azimuthal correlations among jets at CMS

Evolution of α_s as a function of the energy scale (Q).

$\alpha_s(\mathrm{Q})$ evolution

Evolution of α_s as a function of the energy scale (Q).

(1) $\alpha_s(m_z)$ determination in 4 p_T ranges.

UNIVERSITÉ

DE BRUXELLES

LIBRE

ULB

- 2 $\langle Q \rangle$: cross-section-weighted average.
- **3** $\alpha_s(m_z)$ evolution to $\alpha_s(Q)$ via RGE.

			· · · /
$\mathrm{p_{T}}$ range (GeV)	$\alpha_s(\mathrm{m_z})$	$\langle \mathbf{Q} \rangle$ (GeV)	$\alpha_s(\mathrm{Q})$
360 - 700	$0.1177^{+0.0104}_{-0.0067}$	433.0	$0.0967\substack{+0.0066\\-0.0044}$
700 - 1190	$0.1162\substack{+0.0108\\-0.0073}$	819.0	$0.0878\substack{+0.0060\\-0.0042}$
1190 - 1870	$0.1159\substack{+0.0112\\-0.0077}$	1346.0	$0.0830\substack{+0.0055\\-0.0040}$
1870 - 3170	$0.1118\substack{+0.0110\\-0.0070}$	2081.0	$0.0775\substack{+0.0051\\-0.0034}$

CMS

Evolution of α_s as a function of the energy scale (Q).

(1) $\alpha_s(m_z)$ determination in 4 p_T ranges.

UNIVERSITÉ

DE BRUXELLES

LIBRE

ULB

2 $\langle Q \rangle$: cross-section-weighted average.

3 $\alpha_s(m_z)$ evolution to $\alpha_s(Q)$ via RGE.

$\mathrm{p_{T}}$ range (GeV)	$\alpha_s(\mathrm{m_z})$	$\langle \mathrm{Q} angle$ (GeV)	$\alpha_s(\mathrm{Q})$
360 - 700	$0.1177^{+0.0104}_{-0.0067}$	433.0	$0.0967\substack{+0.0066\\-0.0044}$
700 - 1190	$0.1162\substack{+0.0108\\-0.0073}$	819.0	$0.0878\substack{+0.0060\\-0.0042}$
1190 - 1870	$0.1159\substack{+0.0112\\-0.0077}$	1346.0	$0.0830\substack{+0.0055\\-0.0040}$
1870 — 3170	$0.1118^{+0.0110}_{-0.0070}$	2081.0	$0.0775^{+0.0051}_{-0.0034}$

Paris Gianneios (ULB)

 α_{s} from azimuthal correlations among jets at CMS

CMS

Evolution of α_s as a function of the energy scale (Q).

1 $\alpha_s(m_z)$ determination in 4 p_T ranges.

UNIVERSITÉ

DE BRUXELLES

LIBRE

ULB

2 $\langle Q \rangle$: cross-section-weighted average.

3 $\alpha_s(m_z)$ evolution to $\alpha_s(Q)$ via RGE.

$\mathrm{p_{T}}$ range (GeV)	$\alpha_s(\mathrm{m_z})$	$\langle \mathbf{Q} angle$ (GeV)	$\alpha_s(\mathrm{Q})$
360 - 700	$0.1177^{+0.0104}_{-0.0067}$	433.0	$0.0967\substack{+0.0066\\-0.0044}$
700 - 1190	$0.1162\substack{+0.0108\\-0.0073}$	819.0	$0.0878\substack{+0.0060\\-0.0042}$
1190 - 1870	$0.1159\substack{+0.0112\\-0.0077}$	1346.0	$0.0830\substack{+0.0055\\-0.0040}$
1870 - 3170	$0.1118^{+0.0110}_{-0.0070}$	2081.0	$0.0775^{+0.0051}_{-0.0034}$

CMS

Evolution of α_s as a function of the energy scale (Q).

1 $\alpha_s(m_z)$ determination in 4 p_T ranges.

UNIVERSITÉ

DE BRUXELLES

LIBRE

ULB

2 $\langle Q \rangle$: cross-section-weighted average.

3 $\alpha_s(m_z)$ evolution to $\alpha_s(Q)$ via RGE.

$\mathrm{p_{T}}$ range (GeV)	$\alpha_s(\mathrm{m_z})$	$\langle \mathbf{Q} angle$ (GeV)	$\alpha_s(\mathrm{Q})$
360 - 700	$0.1177^{+0.0104}_{-0.0067}$	433.0	$0.0967\substack{+0.0066\\-0.0044}$
700 - 1190	$0.1162\substack{+0.0108\\-0.0073}$	819.0	$0.0878\substack{+0.0060\\-0.0042}$
1190 - 1870	$0.1159\substack{+0.0112\\-0.0077}$	1346.0	$0.0830\substack{+0.0055\\-0.0040}$
1870 - 3170	$0.1118^{+0.0110}_{-0.0070}$	2081.0	$0.0775^{+0.0051}_{-0.0034}$

THANK YOU FOR YOUR ATTENTION

BACK UP

$R_{\Delta R}$ and $R_{\Delta \phi}$ observables

15 / 13

(D0) $\mathrm{R}_{\Delta\mathrm{R}}$ definition

$$\mathbf{R}_{\Delta \mathrm{R}} = rac{\sum_{i=1}^{N_{\mathrm{jet}}(\mathrm{P_T})} N_{\mathrm{nbr}}^{(i)}(\Delta \mathrm{R}, oldsymbol{
ho}_{\mathrm{Tmin}}^{\mathrm{nbr}})}{N_{\mathrm{jet}}(\mathrm{p_T})}$$

• N_{jet}: inclusive number of jets.

UNIVERSITÉ

DE BRUXELLES

LIBRE

ULB

۵

• N_{nbr} : jets with neighbours within angular separation interval ΔR and $p_T > p_{Tmin}^{nbr}$.

(ATLAS)
$$R_{\Delta\phi}$$
 definition

$$R_{\Delta\phi} = \frac{\frac{d^2\sigma_{dijet}(\Delta\phi_{dijet} < \Delta\phi_{max})}{dH_T dy^*}}{\frac{d^2\sigma_{dijet}(inclusive)}{dH_T dy^*}}$$

$$r_{dijet}: \text{ inclusive dijet sample.}$$

$$H_T: \sum_{i \in \text{ intropy}} PT_{ij} \neq y^*: |y_1 - y_2|/2.$$

 α_s from azimuthal correlations among jets at CMS

Measurement: data unfolding

Equivalent observable definition

$$\mathbf{R}_{\Delta\phi} = \frac{\sum_{i=1}^{N_{\rm jet}(\mathbf{p}_{\rm T})} N_{\rm nbr}^{(i)}(\Delta\phi, \boldsymbol{p}_{\rm Tmin}^{\rm nbr})}{N_{\rm jet}(\mathbf{p}_{\rm T})} = \frac{\sum_n n \mathcal{N}(\mathbf{p}_{\rm T}, n)}{\sum_n \mathcal{N}(\mathbf{p}_{\rm T}, n)}$$

where \pmb{n} is the number of neighbours and $\mathbf{p_{T}}$ is jet's transverse momentum.

Motivation

UNIVERSITÉ

DE BRUXELLES

LIBRE

ULB

- ightarrow 2D unfolding of $N(p_T, n)$ distribution.
- \checkmark Migrations among $p_{\rm T}$ and among n bins.
- Account for non-trivial numeratordenominator correlations.

Matrix structure

- x axis: generator-level p_T.
- y axis: reconstructed-level p_T.
- inner cells: neighbouring jet bins.

CMS

Monte Carlo predictions

CMS

- $\bullet~$ Predictions from MC event generators at particle level using RIVET toolkit.
 - For the comparison with experimental data.
 - For the evaluation of non-perturbative (NP) effects.

MC	Matrix Element	Parton Shower	Hadronization	Tune	PDF set
				CUETP8M1	NNPDF2.3
PYTHIA8	$2 \rightarrow 2 \; (LO)$	p_T ordered	Lund string		
				CUETP8M2	NNPDF3.0
HERWIG++	$2 \rightarrow 2 (LO)$	Angular ordered	Cluster model	EE5C	CTEQ6.1M
		PYTHIA8	PYTHIA8	CUETP8M1	NNPDF3.0
POWHEG	$2 \rightarrow 2$ (NLO), $2 \rightarrow 3$ (LO)	PYTHIA8	PYTHIA8	CUETP8M2	NNPDF3.0
		HERWIG++	HERWIG++	EE5C	NNPDF3.0

Paris Gianneios (ULB)

 α_s from azimuthal correlations among jets at CMS

Monte Carlo predictions

• Predictions from Powheg overestimate the measurement by \sim 5-12%.

- Herwig++ EE5C (Pythia8 CUETP8M1) overestimate $R_{\Delta\phi}$ by $\sim 20\%$ (\sim 12-18%).
- Nice description from (LO) Pythia8 tune CUETP8M2T4.

Paris Gianneios (ULB)

UNIVERSITÉ

DE BRUXELLES

LIBRE

ULB

 $\alpha_{\rm s}$ from azimuthal correlations among jets at CMS

CMS.

Combination of QCD and EW corrections

Pure NLO EW corrections for n-jet:

$$\sigma_{nj}^{\text{NLO EW}} = \sigma_{nj}^{\text{LO}} + \sigma_{nj}^{\Delta \text{NLO}_1}$$

 ΔNLO_1 : virtual and real EW corrections.

Combination to QCD process:

1 Additive: $\sigma_{nj}^{\text{NLO QCD}+\text{EW}}$

UNIVERSITÉ

DE BRUXELLES

ULB LIBRE

$$\sigma_{nj}^{\text{LO}} + \sigma_{nj}^{\Delta \text{NLO}_0} + \sigma_{nj}^{\Delta \text{NLO}_1}$$

 $\Delta NLO_0:$ virtual and real QCD corrections.

2 Multiplicative: $\sigma_{nj}^{\text{NLO QCD} \times \text{EW}}$

$$\sigma_{nj}^{ ext{LO}}\left(1+rac{\sigma_{nj}^{ extsf{a} extsf{NLO}_{0}}}{\sigma_{nj}^{ extsf{LO}}}
ight)\left(1+rac{\sigma_{nj}^{ extsf{a} extsf{NLO}_{1}}}{\sigma_{nj}^{ extsf{LO}}}
ight)$$

Data vs Theory

UNIVERSITÉ

DE BRUXELLES

LIBRE

ULB

Sensitivity to α_s

UNIVERSITÉ

DE BRUXELLES

LIBRE

ULB