

ATLAS Searches for low mass resonances (resolved signatures)

Loan Truong (University of Johannesburg)

On behalf of the ATLAS collaboration

Additional scalar in BSM Higgs searches

- Two-Higgs-Double-Models (2HDM), 2HDM+S, Axion Like Particles (ALPs), etc
- ⊁ Additional Scalars have mixing with SM Higgs
- $\begin{array}{l} & \hbox{ Current 95\% CL BR(Higgs \rightarrow invisible) < 0.107 \underline{\mathsf{PLB 842}(2023)}\\ \underline{137963}, \ \mathsf{BR}(\mathsf{Higgs} \rightarrow \mathsf{undetected}) < 0.12 \underline{\mathsf{Nature 607, 52}(2022)}\\ & \Longrightarrow \ \mathsf{still} \ \mathsf{allows \ significant \ BSM \ Higgs \ \mathsf{decay}} \end{array}$
- 🔀 Higgs portal to Dark Sector.
- ☆ Presenting analyses using p-p collisions, at $\sqrt{S} = 13$ TeV, $\mathcal{L} = 139$ fb⁻¹

Analysis	Mass range [GeV]	Reference
2HDM multi-b multi-lepton	200 - 1500	JHEP_271P_0723
$t ightarrow qX, X ightarrow bar{b}$	20 - 160	JHEP_108P_0123
h $ ightarrow$ $2a$ $ ightarrow$ $2b2\mu$	16 - 62	DK12786
$4\ell + MET$	160 - 1300	JHEP_133P_0124
"Boosted" $di - \gamma$ resonances	10 - 70	JHEP_073P_1122
$di - \gamma$ resonances	66 - 110	arXiv:2407.07546

2HDM multi-b multi-lepton JHEP_271P_0723

- H Motivation: (General) g2HDM, no Z_2 symmetry \rightarrow alignment limit (extra scalars have vanishingly small mixing with the SM Higgs).
 - Heavy Higgs boson features Flavour-Changing-Neutral-Higgs (FCNH) couplings with top-quarks: ρ_{tt} , ρ_{tq} (q = u, c quarks)
 - \implies 2 same sign (SS) tops, 3-top, 4-top production
 - Bench mark couplings: $\rho_{tt} = 0.4$, $\rho_{tq} = 0.2$
 - First g2HDM search, first BSM production for 3-top
 - Signatures: multi-e/ μ , multi-jets with b-jets, charge asymmetry

✤ Extra: R-parity-violating (RPV) SUSY model motivated by lepton flavour and muon (g-2) anomalies

2HDM multi-b multi-lepton, Analysis method

- Signal categorization into signal regions (SRs) based on
 - The number of leptons (e/ μ)
 - The total lepton charge
 - multi-output deep neural network (DNN) score

K Background Estimate

- Irreducible (prompt lepton): tt̄W, tt̄tt̄, tt̄Z/γ*, VV
- Reducible (non-prompt): $t\bar{t}$, V+jets, single-top-quark
- Dedicated control regions (CRs) are exploited

2HDM multi-b multi-lepton, Results

- Additional uncertainty for the MC modeling of $t\bar{t}$ V and $t\bar{t}$ +jets events with additional heavy-flavor jets".
- ✤ Dominated by statistical uncertainty
- Maximum-likelihood fit in the 27 SRs + CRs
- No significant excess is observed
- Highest excess: 2.8 σ , at $m_H = 900$ GeV and $\rho_{tt} = 0.6, \ \rho_{tc} = 0.0, \ \rho_{tu} = 1.1$

Observed significance g2HDM couplings, 95% CL upper limit RPV XS

$t \rightarrow qX, X \rightarrow b\overline{b}$, JHEP_108P_0123

Motivation: Flavour Changing Neutral Current (FCNC)

- BSM version of FCNC $t \rightarrow qH$
- Model with Froggatt-Nielsen mechanism: field X charged under flavour charge (flavon) symmetry $U(1)_F$, which is then broken
- \implies decays of a top quark to up type quarks (u, c) and a scalar boson X, $X \rightarrow b\bar{b}$
- Light m_X : [20, 160] GeV ($< m_{top}$)

Signatures:

- Consider top-quark pair decays
 - $\multimap\,$ a top decay to exotic qX
 - $\multimap\,$ a top decay to SM Wb
- Final state: 1 electron or μ and \geq 4 jets.
- Main background: $t\bar{t}$ production in association with jets

$t ightarrow qX, X ightarrow bar{b}$, Analysis method

Categorized according to the multiplicities of jets and b-jets

- 3 SRs: 4j 3b, 5j 3b and 6j 3b,
- 3 CRs: 4j 4b, 5j ${\geq}4b$ and 6j ${\geq}4b.$
- Using a NN to discriminate signal against bkg with info from jets, lepton, invariant masses, angular separation

Background Estimate

- 3 additional regions: 2b 1bl-jet (with 4, 5, 6 jets in total). bl-jet is a looser b-jet.
- Deriving weights based on H_T^{all} , the scalar sum of the transverse momenta of all selected objects
- \implies to correct mismodelling of MC predictions in $t\bar{t}$ and $W \rightarrow cb$

$t \rightarrow qX, X \rightarrow b\bar{b}$, Results

- Maximum-likelihood fit on signal NN output distributions in 3 SRs and the bkg total yields in 3 CRs
- Dominating systematic uncertainty: tt modelling, jet energy scale and resolution, or jet tagging
- No significant excess is observed

A DNN output score

95% CL upper limit for $BR(t \rightarrow u/cX) \times BR(X \rightarrow b\bar{b})$

$h \rightarrow 2a \rightarrow 2b2\mu$, DK12786

- ✤ Motivation: Light (pseudo) scalars a that couples to the 125 GeV Higgs boson
 - Naturalness problem, couple to dark sector
 - Muon (g-2) anomaly
 - $m_a < \frac{m_H}{2}$: [16, 62] GeV

K Signatures:

- Final state: Pair of $b\bar{b}$ and $\mu^+\mu^-$, (4 fermions coming from a Higgs decay).
- Main background: Drell-Yan (DY) di-muon in association with b-quarks, $t\bar{t}$ where $W \rightarrow \mu\nu$. Estimated using 2 dedicated CRs (DYCR and TCR). Then validated in 2 validation regions (VRs)
- \bigstar Kinematic likelihood fit exploiting $m_{\mu\mu} \sim m_{bb} \Longrightarrow$ improving $m_{bb\mu\mu}^{KL}$
- 🔀 A boosted decision tree (BDT) classifier to separate S vs B
- SR bins after inclusive selection: $|m_{\mu\mu} m_a| < X$ and $BDTm_a > 0.2$, where X = 1 (1.5) GeV for $m_a \le 45$ (>45) GeV.

Summary of CRs, SRs and VRs

$h \rightarrow 2a \rightarrow 2b2\mu$, Method and Results

- $\begin{tabular}{ll} \clubsuit Maximum-likelihood fit on $m_{\mu\mu}$ in SR $$+ CRs$ \end{tabular} \end{tabular} \end{tabular}$
- Dominating systematic uncertainty: Statistical uncertainty, then b-tagging
- No significant excess is observed
- Highest excess: local (global) of 3.3 (1.7) σ , at $m_{\mu\mu} = 52 \text{ GeV}$

95% CL upper limit for $BR(h \rightarrow 2a \rightarrow 2b2\mu)$ and p_0 -value

Loan Truong (University of Johannesburg) ATLAS Low mass resonances (resolved) - ICHEP 2024

4*ℓ* + *MET*, JHEP_133P_0124

Motivation:

- $\bullet~2HDM{+}S:$ additional scalar S \rightarrow Dark Matter portal
 - $\sim\,$ S decays invisibly \rightarrow missing transverse momentum ($E_{\rm T}^{\rm miss}).$ Mass fixed at 160 GeV
 - \multimap Added a heavy R scalar, $R \rightarrow S + H$
 - $m_H > m_H^{SM}$: > 200 GeV
- Baryongenesis: $A \rightarrow Z + H \rightarrow 4\ell + 2\ell/2$ -jets/2 invisibles
- Narrow Width Approximation (NWA) for all scalars

Signatures:

- Final state: 4 charged leptons (e/ μ), $E_{\mathrm{T}}^{\mathrm{miss}}$ or 2 jets
- Main background: $q\bar{q} \rightarrow ZZ$ (>86%), $gg \rightarrow ZZ$, etc.

Signal region	$R \rightarrow SH \rightarrow 4\ell + E_T^{miss}$ and $A \rightarrow ZH \rightarrow 4\ell + X$			
SR1		$n_{\text{jets}} = 0$	$p_T^{4\ell} > 20 \text{ GeV}$	$E_{\rm T}^{\rm miss}$ significance >2.0
SR2	$n_{b-jets} = 0$	$n_{\rm jets} \ge 1$	$p_{T}^{4\ell} > 10 \text{ GeV}$	$E_{\rm T}^{\rm miss}$ significance > 3.5
SR3			$p_{\rm T}^{4\ell} < 10 {\rm GeV}$	$2.5 < E_T^{\text{miss}}$ significance < 3.5
	$A \rightarrow ZH \rightarrow 4\ell + X$			
SR4		$n_{\rm jets} \geq 2$	$ m_{jj} - m_Z < 20 \text{ GeV}$	
SR5	$n_{b-jets} = 0$		<i>m</i>	$ m_Z > 20 \text{ GeV}$
SR6	$n_{jets} = 1$			iets = 1
SR7	$n_{b-jets} \ge 1$			

M MC is used to model, then parameterise $m_{4\ell}$ distribution in bkgs

$4\ell + MET$, Method and Results

- \bigstar Maximum-likelihood fit on $m_{4\ell}$ in SR
- ➡ In each SR, the normalisation for the ZZ bkg $(q\bar{q}/gg \rightarrow ZZ)$ is extracted from the fit to data.
- Dominating uncertainty: MC modeling, flavour tagging
- ✤ No significant excess is observed
- Highest excess: local significance 2.5 σ , at $(m_A, m_H) = (510, 380)$ GeV

"Boosted" $di - \gamma$ resonances, JHEP_073P_1122

Motivation:

- New phenomena: narrow resonances X with mass range [10, 70] GeV
- Pseudo Nambu–Goldstone bosons (pNGBs) associated with spontaneously broken approximate global symmetries at the TeV scale or above, ALPs
- All resonances are considered with NWA
- Signatures:
 - Final state: pair of closely spaced photons, large $\textit{di} \gamma \; \textit{p}_{\mathrm{T}}$
 - Signal MC samples: $gg \rightarrow X \rightarrow \gamma\gamma$ (+ \leq 2 associated jets)
 - Background MC samples: $di \gamma$ (+ associated jets)
- Using analytic functions to describe the S/B components
 - Double-sided Crystal Ball function (DSCB) for signal
 - Bkg MC template is smoothed by the Gaussian Process fit
- Fiducial volume: 2 γ with $E_{\rm T}^{\gamma} >$ 22 GeV, $|\eta^{\gamma}| < 2.37$, $p_{\rm T}^{\gamma\gamma} > 50$ GeV

DSCB function fit, $m_X = 30$ GeV

"Boosted" $di - \gamma$ resonances, Method and Results

- Aximum-likelihood fit to data $m_{\gamma\gamma}$ distribution and analytic functions for S/B
- Dominating uncertainties: data statistic, bkg modelling
- ✤ No significant excess is observed
- Highest excess: local (global) significance of 3.1 (1.5) σ , at $m_{\gamma\gamma} = 19.4 \text{ GeV}$

$m_{\gamma\gamma}$ after all selections

95% CL upper limit for production fiducial XS of resonance X, and ALPs

$di - \gamma$ resonances, arXiv:2407.07546

New compared to "Boosted analysis":

- Covering high-mass region: range [66, 110] GeV
- More: a model-dependent search for additional low-mass Higgs boson
- $\bullet\,$ More: Drell-Yan ee bkg with e faking γ
- More: Events splitted to 3 categories based on γ conversion, then further splitting to 3 BDT categories in model-dependent case to discriminate continuum $\gamma\gamma$ bkg and low-mass Higgs boson signal
- ℵ No significant excess is observed
 ✤ Highest excess: local significance of
 - Model-independent: 2.2 σ at $m_{\gamma\gamma}$ 71.8 GeV
 - Model-dependent:
 - --- Large Width Approximation: 1.7 σ at $m_{\gamma\gamma}$ 85.2 GeV,
 - --> NWA: 1.7 σ at $m_{\gamma\gamma}$ 95.4 GeV (CMS saw 2.9 σ arXiv:2405.18149)

- Presented summaries of 6 low-mass additional scalar resonance searches
- ★ No significant excess but some interesting local excesses.
- The usage of multivariate techniques and especially machine learning bring important boost to analyses
- Some searches are statistically limited.
 - Looking forward to Run 3 analyses with more data, advanced analysis techniques
 - At HL-LHC, much larger dataset will allow substantial improvements

THANK YOU

ъ.

▲御▶ ▲ 理▶ ▲ 理≯