Measurements of Higgs boson production \mathcal{F} with top quarks with the ATLAS detector

Filip Nechanský

Institute of Physics of the Czech Academy of Sciences Co-funded by the European Union

Top to Higgs coupling

- Top-Higgs strong Yukawa coupling $y_t \sim 1$
- Consequence:
 - Significant correction to Higgs self-coupling

• Major contributor to fermion loops in general

- Can be measured indirectly (e.g. H->yy)
 caveat: assumes no new physics
- $H \rightarrow tt$ not accessible due to $m_{H} << 2m_{t}$
- Direct measurement! E.g. in tH or ttH:

ttH in nutshell

Branching fraction

10-

Ratio to SM

- Production channel with low cross-section
- Both Higgs and top have diverse decay channels,
 - Impossible to cover in single analysis
 - Relies on most objects ATLAS reconstructs and identifies:
 e, μ, γ, hadronically decaying τ-jets, b-jets, missing energy ...
- Analysis split based on Higgs-decay, each with unique challenges:

Decay mode

ttH measurements overview

ttH(bb) with full Run 2 data

- Main challenge: tt+bb background
 - How to separate the signal?
 - What are the modeling uncertainties? (heavy quarks + large number of jets!)
- Expected sensitivity 2.7σ, observed 1σ:

• Also measured $p_T(H)$ in STXS scheme

ttH(bb): We can do better!

New legacy analysis of Run 2 data: Expected sensitivity increased from 2.7o to 5.4o!

ATLAS managed to improve precision and reach 4.6σ observed significance in ttH(bb) alone!

... what did it take?

Problem tackled from three major directions

Improved reconstruction and particle identification

- ATLAS-wide effort
- Particle-flow jets
- Improved tagging of b-jets

State-of-the-art machine learning

- Improved signal / background classification Improved Higgs reconstruction

Legacy ttH(bb) analysis

Link to paper

- Analysis done for leptonic decay of ttbar
 - Single-lepton: resolved and boosted (~45% BR)
 - Dilepton: Inclusive (<9% BR)
- Goal to measure both inclusive XS and p_T(H) in STXS model: [0, 60, 120, 200, 300, 450+] GeV
 extra bin wrt to 2021 result
- Looser selection wrt 2021 result
 - Single lepton: 5 jets, 3 b-jets (85% b-tag eff.)
 - Dilepton: 2 b-jets (85% b-tag eff.) + 1b-jet (70% b-tag eff.)
 - Allows better control of tt+jets backgrounds
 - Factor 3 larger signal acceptance

ttbar branching ratio:

www.quantumdiaries.org - Top quark

Monte Carlo overview

- Heavy flavor classification of ttbar, based on hadron presence in additional jets:
 - \circ tt+>1b: at least one jet with b-hadron
 - o tt+≥1c: not tt+≥1b
 - + at least one jet with c-hadron
 - tt+light: not tt+≥1b/tt+≥1c
- tt+c and tt+light still contribute (looser selection + flavor tagging not perfect)

Process	Sample		
$t\bar{t}H$	Powheg + Pythia8		
$t\bar{t} + ext{light}, t\bar{t} + \geq 1c$	Powheg + Pythia8 $t\bar{t}$ @NLO 5FS		
$t\bar{t} + \ge 1b$	Powheg + Pythia8 $tar{t}+bar{b}$ @NLO 4FS		
tH , $tar{t}V$, $tar{t}tar{t}^*$	aMC@NLO + Pythia8		
V + jets, diboson	Sherpa		
Single top	Powheg + Pythia8		

tt+bb can have different signature in the detector, with different impact of modeling. ⇒ three categories of tt+b considered in legacy analysis:

- tt+≥2b
- tt+1B (e.g. bb in single jet)
- tt+1b (e.g. 1 jet out-of-phase-space)

Modeling of tt+bb

- In-between the analyses, ttbar modeling was scrutinized [ATL-PHYS-PUB-2022-006]
 - updated renormalization scale, nominal model closer to data
 - updated systematic model
- For the first time: **consistent 4FS Monte Carlo used for tt+bb** (2021 analysis partially relied on 5FS)

Uncertainty	Legacy analysis		
ISR	Var3c (PS)		
FSR	μ_R FSR (PS)		
ME scale	Independent μ_R/μ_F		
NLO matching	PP8 4FS pthard = 1 4FS		
PS & Hadronisation	PH7 4FS		
Parton shower	PP8 4FS dipole recoil		

Also new dedicated tt+bb measurement<u>CERN-EP-2024-191</u>, presented yesterday by <u>Ricardo Goncalo</u>

Multivariate analysis

- State-of-the art NN classifier using transformers with attention mechanism [arXiv:1706.03762]
- Low-level objects used as inputs (e.g. 4-vectors, b-tagging discriminant)
- Similar structure used to classify processes and to reconstruct properties, difference in the last step and the training
- **Classification transformer:**
 - Class for ttH + all tt+jets categories, define analysis regions based on score
 - Select boosted events in single lepton 0

Networks are getting more complex:

Event passing Pre-selection

Classification

Transformer

ttH

Classifier

above

Threshold?

<

*t*t̄ + 1*B* CR

Sort by max

tī + jets

No

ℓ + iets

boosted

Event?

 $t\bar{t} + 1b$

Reconstruction transformer

- Find b-jets from decay of the Higgs
- Structure similar to SPANet [Phys. Rev. D 105 (2022) 112008]
- Used to define regions for different bins of the $p_{T}(H)$ for STXS
- Also employed for tt+≥2b for better control over the background

Statistical analysis

- Profile likelihood fit of all signal and control regions
- Fit variables:
 - Boosted region in single lepton: reconstructed Higgs pT
 - Otherwise discriminant variables (different for each region!)
- 8 free-floating normalization factors for major ttbar background components
- 1 (6) signal parameters for inclusive (STXS) result
- 5.4σ expected sensitivity!

Results

All these improvements come together to deliver significantly improved measurement of ttH(bb)!

Inclusive cross-section.

 $\sigma_{t\bar{t}H} = 411 {}^{+101}_{-92}$ fb = 411 ± 54(stat.) ${}^{+85}_{-75}$ (syst.) fb, \rightarrow dominated systematically

Best single channel measurement of ttH!

ATLAS

 $p_{T}^{H} \in [0, 60) \text{ GeV}$

 $p_T^H \in [60, 120) \text{ GeV}$

p^H_T ∈ [120, 200) GeV

p^H_T ∈ [200, 300) GeV

p_T^H ∈ [300, 450) GeV

p^H_T ∈ [450, ∞) GeV

Total Unc.

 $\sqrt{s} = 13 \text{ TeV}, 140 \text{ fb}^{-1}, m_{\text{H}} = 125.09 \text{ GeV}$ **Total**

Syst. only Stat. only SM + Theory

+ 0.69

+ 0.54

+ 0.46

+0.44

+ 0.55

+ 0.89

- 0.83

+ 0.20

- 0.42

1.25

0.77

0.88

0.77

0.27

0.63

(Stat. Syst.)

+ 0.52 + 0.46

- 0.51 - 0.40

+0.41 + 0.35

- 0.40 - 0.32

+0.34 + 0.31

- 0.33 - 0.28

+0.36 + 0.26

- 0.35 - 0.24

+ 0.44 + 0.33

- 0.42 - 0.33

+0.76 + 0.47

+0.11 + 0.17

- 0.43

In conclusion

Still a lot to gain from studying Run-2 data!

Improvements coming from all aspects of analysis

- Object reconstruction/performance
- Analysis strategy, state-of-the-art methods
- Theoretical prediction and uncertainties

Improvement in measured (expected) significance from 1.0 σ (2.7 σ)

to 4.6 σ (5.4 σ) with the same Run-2 dataset!

Ultimate precision will be reached in combination with the other ttH channels, ttH(bb) to play significant role

Backup

Classification transformer

Define signal and control regions for all tt+jets background categories + separate classifier for boosted events (using large-R jets) in single lepton channel

Discriminant:

$$d_{i} = \frac{p_{i}}{\sum_{j \neq i} p_{j} \cdot \hat{N}_{ij}}.$$
$$\hat{N}_{ij} = N_{j} / \sum_{k \neq i} N_{k}$$

where: p_i: average network output for process i N_i: event yield of process i

Reconstruction transformer performance

CP nature of Higgs boson HIGG-2020-03

Phys. Lett. B 849 (2024) 138469

• Standard model predicts CP-even top-Higgs Yukawa

-> is there CP-odd component?

- Measured in ttH/tH with H->bb
- Measuring alpha mixing angle between CP-even and CP-odd
- Dedicated BDT sensitive to CP
- Result $\alpha = 11^{\circ+52^{\circ}}_{-73^{\circ}}$, compatible with SM prediction

Uncertainty sources and impact

Uncertainty source	$\Delta \sigma_{t\bar{t}H}$ (fb)		$\Delta \sigma_{t\bar{t}H} / \sigma_{t\bar{t}H} (\%)$		
Process modelling					
ttH modelling					
$t\bar{t}H$ radiation	+35	-21	+9	-5	
$t\bar{t}H$ parton shower	+32	-19	+8	-5	
$t\bar{t}H$ matching	< 0.1	-0.3	< 0.1	-0.1	
$t\bar{t}H$ theory	+25	-17	+6	-4	
$t\bar{t} + \ge 1b$ modelling					
$t\bar{t} + \ge 1b$ radiation	±31		±8		
$t\bar{t} + \ge 1b$ parton shower	±29		±7		
$t\bar{t} + \ge 1b$ matching	±19		-	±5	
$t\bar{t} + \ge 1c$ modelling	± 18		:	± 4	
$t\bar{t}$ + light modelling	±5		± 1		
tW modelling	±16		±4		
Minor background modelling	±19		±5		
Flavour tagging	± 36		±9		
Jet modelling	±22		±5		
Monte-Carlo statistics	±17		±4		
Other instrumental	± 10		±2		
Total systematic uncertainty	+85	-75	+21	-18	
Normalisation factors	±21		±5		
Total statistical uncertainty	±54		±13		
Total uncertainty	+101	-92	+25	-22	

20

Post-fit overview of signal regions

Single lepton signal regions postfit

Dilepton signal regions postfit

Single lepton control regions postfit

Dilepton control regions postfit

Systematic sources comparison

Uncertainty	Previous analysis	Legacy analysis	$t\bar{t}$ + jets components
ISR	Var3c (PS) and μ_R/μ_F (ME)	Var3c (PS)	All
FSR	μ_R FSR (PS)	μ_R FSR (PS)	All
ME scale		Independent μ_R/μ_F	All
NLO matching	aMC@NLO + Pythia8	PP8 4FS pthard = 1 4FS	$t\bar{t}+\geq 1b$
		PP8 4FS pthard = $1 5FS$	$t\bar{t} + ext{light}, t\bar{t} + \ge 1c$
PS & Hadronisation	Powheg + Herwig7 (PH7)	PH7 4FS	$t\bar{t}+\geq 1b$
		PH7 5FS	$t\bar{t} + ext{light}, t\bar{t} + \ge 1c$
Parton shower	-	PP8 4FS dipole recoil	$t\bar{t} + \geq 1b$