Search for Rare Processes and Lepton-flavor Violation Decays of Higgs Boson at ATLAS Experiment

Bing Zhou (the Univ. of Michigan), on behalf of ATLAS Collaboration ICHEP, July 18, 2024, Prague

Introduction

- Over 12M Higgs boson produced at the LHC opened a new research area for **discovery of rare processes** and searching for lepton-flavor violation decays of the Higgs boson
- Probing the Higgs boson couplings to the 2nd (& possible 1st) Fermion families become accessible, where there may be signs of new physics.
- Outline of the report will follow the topics shown in the pictures below

Search for H \rightarrow Z\gamma

Phys. Lett. B 809 (2020) 135754 (arXiv:2005.05382v2)

- SM Br(H \rightarrow Z γ): $\sim 1.5 \times 10^{-3}$
- Higgs decay to $Z\gamma$ through loops; sensitive to new physics
- ATLAS Run 2 data: 140 fb⁻¹, pp collision at $\sqrt{s} = 13 TeV$
- Final states: high mass resolution & clean signature: an isolated high pT photon plus a pair of e^+e^- or $\mu^+\mu^-$ decay from Z ($|m_{ll} m_Z| < 10$ GeV)
- Major background: $l^+l^- + (fake)\gamma$ from DY+ISR, and DY+jets (estimated from data)
- Analysis: classify the events into six exclusive categories. Boosted-Decision-Trees is applied to separate the Higgs events from VBF production mode.
- Final discriminant: $m_{Z\gamma}$, simultaneous fit S+B to all categories to extract the signal. (Signal model is decided by MC and background is described by analytic functions.)

Search for $H \rightarrow Z\gamma$ Phys. Lett. B 809 (2020) 135754 (arXiv:2005.05382v2)

The number of data events selected in six categories in m_{Zγ} mass range [105, 160] GeV

- Observed (expected) upper limit on the $\sigma \times \mathcal{B}$ for $pp \rightarrow H \rightarrow z\gamma$: 3.6 (2.6) $\times SM$ prediction at 95% CL
- The observed (expected) significance: 2.2σ (1.2σ)
- The best-fit signal strength: $\mu \equiv \frac{\sigma_{measured}}{\sigma_{SM}} = 2.0^{+1.0}_{-0.9}$

The 1st Evidence for $H \rightarrow Z\gamma$

ATLAS + CMS Combined search for $H \rightarrow Z\gamma$

Phys. Rev. Lett. 132 (2024) 021803

- The CMS analysis classify the events into **eight** exclusive categories based on BDT and kinematic distributions; having similar search sensitivity as ATLAS.
- The experimental uncertainties from the ATLAS and CMS are treated as uncorrelated; the theoretical QCD uncertainty and the ones in the $H\rightarrow Z\gamma$ branching fraction prediction are treated as correlated.

Search for $H \rightarrow \mu \mu$

PLB 812 (2021) 135980 (arXiv:2

(arXiv:2007.07830v2)

Probing the Higgs Boson Yukawa couplings to the 2nd generation fermions

- Observed upper limit on the $\sigma \times \mathcal{B}$ (2.18 × 10⁻⁴) for $pp \rightarrow H \rightarrow \mu\mu$: 2.2 × *SM prediction* at 95% CL
- The best-fit signal strength: $\mu \equiv \frac{\sigma_{measured}}{\sigma_{sM}} = 1.2 \pm 0.6$
- The observed (expected) significance: 2.0σ (1.7 σ)

Search for $H \rightarrow cc$

Probing the Higgs Boson Yukawa couplings to the 2nd generation fermions

- Higgs production associating with a vector boson Z, or W ($\mathcal{B}(H \rightarrow cc)=3\%$)
- $H \rightarrow c\bar{c}$, Z and W decay leptonically:
 - $ZH \rightarrow \nu \bar{\nu} c\bar{c}, \ l^+ l^- c\bar{c}$
 - $W^{\pm}H \rightarrow l^{\pm}\nu \ c\bar{c}$
 - events contain 0, 1, 2 charged leptons, tag 1c-jet and 2 c-jets
- Major background from Z/W+jets, top, and VZ($\rightarrow c\bar{c}$)
- Exploits specific c-tagging techniques

m_{cc} spectra with different l, and c - jet final states

Search for H→cc

- Validated with simultaneous measurements of WW, WZ, ZZ events with $Z \rightarrow c\bar{c}$, and $W \rightarrow cq$.
- Observed (expected) upper limit on (W/Z)Z(→ cc̄) is 2.6 (2.2) standard deviations above background-only prediction for (W/Z)W(→ cq) 3.8(4.6)
- Upper limit of observed (expected) of $(W/Z)H(\rightarrow c\bar{c})$ is 26 (31)× SM prediction

Eur. Phys. J. C 82 (2022) 717

Post-fit m_{cc} distribution summed over all signal regions after subtracting backgrounds, leaving events from VH(\rightarrow cc),VZ(\rightarrow cc), VW(\rightarrow cq), with 1 c-tag (left) and 2 c-tags (right).

Higgs-charm Yukawa Coupling

-Comb. (obs.) ATLAS ····· Comb. (exp.) $\sqrt{s} = 13 \text{ TeV}$. 139 fb⁻¹ - 0-lepton (obs.) VH. H→ cc - 1-lepton (obs.) |κ_c| < 8.5 at 95% CL - 2-lepton (obs.) 2.5 95% CI 1.5 0.5 -20 -10 20 30 -30 0 10 κ_{c}

Eur. Phys. J. C 82 (2022) 717

$VH, H \rightarrow cc$ (direct search) The observed (expected) Higgs-charm Yukawa coupling modifier $|\kappa_c| < 8.5$ (12.4)

at 95% CL

JHEP 05 (2023) 028 arXiv:2207.08615v2

The limit on the κ_c can be improved by combining VH(\rightarrow cc, bb) with the interpretation $p_T^H(H \rightarrow 4l, \gamma\gamma)$ $|\kappa_c| < 2.5$

Combined with $VH(\rightarrow bb)$:

Ratio: $|\kappa c/\kappa b| < 4.5$ (5.1 expected) at 95% CL, smaller than the ratio of b- and c-quark masses

Nature-Phys 607 pages 52-59 (2022)

arXiv:2207.00092v2

Combined coupling fitting

When the coupling strength modifier Kc is left unconstrained in the fit, an upper limit of $|\kappa_c| < 5.7 (7.6)$ at 95% C.L.

Search for $H \rightarrow J/\psi /\psi(2S)/\Upsilon(nS) + \gamma$

Eur. Phys. J. C 83 (2023) 781 (arXiv:2208.03122v3)

 $H \rightarrow \mathcal{M} + \gamma$ offer an alternative way to probe the quark Yukawa couplings to Higgs boson

- $H \rightarrow J/\psi / \psi(2S)$ + γ allow access to the **c-quark Yukawa coupling**
- $H \rightarrow \Upsilon(1S, 2S, 3S) + \gamma$ allow access to the **b-quark Yukawa coupling**

Vector	SM branching fraction, $\mathcal{B}(H \to Q \gamma)$		
quarkonium state	Ref. [31] (2015)	Refs. [33, 34] (2017)	Ref. [36] (2019)
J/ψ	$2.95^{+0.17}_{-0.17} \times 10^{-6}$	$2.99^{+0.16}_{-0.15} \times 10^{-6}$	$3.01^{+0.15}_{-0.15} \times 10^{-6}$
$\Upsilon(1S)$	$4.61^{+1.76}_{-1.23} \times 10^{-9}$	$5.22^{+2.02}_{-1.70} \times 10^{-9}$	$9.97^{+4.04}_{-3.03} \times 10^{-9}$
$\Upsilon(2S)$	$2.34^{+0.76}_{-1.00} \times 10^{-9}$	$1.42^{+0.72}_{-0.57} \times 10^{-9}$	$2.62^{+1.39}_{-0.91} \times 10^{-9}$
$\Upsilon(3S)$	$2.13^{+0.76}_{-1.13} \times 10^{-9}$	$0.91^{+0.48}_{-0.38} \times 10^{-9}$	$1.87^{+1.05}_{-0.69} \times 10^{-9}$

- * These radiative decays have a distinct signature, $\mathcal{M}(\rightarrow \mu^+\mu^-) + \gamma$, which helps suppress the large multi-jet background that affect direct $H \rightarrow q\bar{q}$ searches.
- Signal event selection efficiencies 19% 21%
- ★ Background: inclusive production $q\bar{q} → \mu^+\mu^- \gamma$ from DY, QCD jets with real or fake γ, estimated from data

\clubsuit Trigger: a high pT $\gamma\,$ and 1 or 2 muons in the event

Search for $H \rightarrow J/\psi / \psi(2S) / Y(nS) + \gamma$

Mass spectra

$\mathbf{H} \rightarrow \Upsilon(1S, 2S, 3S) + \gamma$

J	lψ	\rightarrow	μ^+	μ-
_	T			

╵╻╻┥╵┥┥┥┥╵

2.4 2.6 2.8 3 3.2 3.4 3.6 3.8

20

0.5

	\u03cty(2S)	$\rightarrow \mu^+ \mu^-$	
Events / 0.05 GeV	50 + Data - Background Fit W (nS) Background 40 Exclusive Background Dimuon Background B(H $\rightarrow J(\psi\gamma) = 2.0 \times 30$ B(H $\rightarrow \psi(2S)\gamma) = 10$	$\begin{array}{l} \pmb{ATLAS} \\ \sqrt{s} = 13 \ \text{TeV}, \ 139 \ \text{fb}^{-1} \\ 122 < m_{\mu^{1}\mu^{1}} < 128 \ \text{GeV} \\ \text{nd} \\ \\ 10^{-4} \\ .5 \times 10^{-4} \end{array}$	

4 4.2

m_{µ*u}· [GeV]

Resul	Results 95% CL upper limits					
Branching fraction				$\sigma \times 2$	B	
Decay	Higgs bose	on [10 ⁻⁴]	Z boson	[10 ⁻⁶]	Higgs boson [fb]	Z boson [fb]
channel	Expected	Observed	Expected	Observed	Observed	Observed
$J/\psi \gamma$	$1.8^{+0.8}_{-0.5}$	2.0	$0.7^{+0.3}_{-0.2}$	1.2	11	69
$\psi(2S)\gamma$	$8.1^{+3.6}_{-2.3}$	10.5	$3.0^{+1.3}_{-0.8}$	2.4	58	142
$\Upsilon(1S)\gamma$	$2.7^{+1.2}_{-0.8}$	2.5	$1.6^{+0.6}_{-0.4}$	1.1	14	62
$\Upsilon(2S) \gamma$	$3.4^{+1.5}_{-1.0}$	4.2	$2.1^{+0.8}_{-0.6}$	1.3	24	74
$\Upsilon(3S)\gamma$	$3.0^{+1.3}_{-0.8}$	3.4	$1.9^{+0.8}_{-0.5}$	2.4	19	143

Search for H $\rightarrow \omega \gamma$, or **H** $\rightarrow k^* \gamma$

Phys. Lett. B. 847 (2023) 138292 (arXiv:2301.09938v2)

- Search for $\mathbf{H} \rightarrow \omega \gamma \rightarrow \pi^+ \pi^- \pi^0 \gamma$ to probe flavour-conserving Higgs boson couplings to light quarks $(\mathcal{B}(\mathbf{H} \rightarrow \omega \gamma) = (1.48 \pm 0.08) \times 10^{-6});$ the search is performed along with the analogous $Z \rightarrow \omega \gamma$ $(\mathcal{B}(Z \rightarrow \omega \gamma) = (2.82 \pm 0.40) \times 10^{-8}).$ Upper limit from previous search at LEP: $\mathcal{B}(Z \rightarrow \omega \gamma) < 6.5 \times 10^{-4}.$
- Search for $H \rightarrow k^* \gamma \rightarrow k^+ \pi^- \gamma$ can probe flavour-violating Higgs boson couplings to light quarks
- The main sources of background in the searches are events involving inclusive γ + jet or multi-jet processes, where a Meson system is reconstructed from Inner Detector tracks originating from a jet.

Search for $H \rightarrow ee$, and $H \rightarrow e\mu$ (LFV)

- $\mathcal{B}(H \rightarrow ee) \sim 5 \times 10^{-9}$; Major background: DY \rightarrow ee
- A possible sign of new physics would be the observation of lepton flavour violation (LFV) in decays of the Higgs boson into a pair of leptons with different flavours.

Fit

- Signal (MC): Crystal ball & Gaussian
- Background: 2nd order Polynomial
- Mass window [110, 160] GeV

Results

The observed (expected) *B* upper limits at 95% C.L.

• $\mathcal{B}(H \to ee): 3.6 \times 10^{-4}$ (3.5 × 10⁻⁴) • $\mathcal{B}(H \to e\mu): 6.2 \times 10^{-5}$ (5.8 × 10⁻⁵)

PLB 801 (2020) 135148

(2304.13757)

 $\mathcal{B}(H \to e\tau) < 0.20\% (0.12\%)$

Use Multi-variant-Analysis (Neutral Networks & Boosted Decision Trees) discriminants to enhance signal over background, extract results

Obs. (exp) limits at 95% CL come from a simultaneous fit

Summary

ATLAS has searched for rare processes and Lepton-flavor Violation decays of Higgs Boson

- The first evidence of $H \rightarrow Z\gamma$ is observed with 3.4 σ significance by combining ATLAS and CMS results
- Probing the Higgs boson Yukawa couplings to the 2nd generation fermions,
 - The observed (expected) $H \rightarrow \mu\mu$ significance: 2.0 σ (1.7 σ)
 - $H \rightarrow cc$, Higgs boson to charm-quark quark coupling: $|\kappa_c| < 5.7 (7.6)$ at 95% C.L.
- Search for $H \to \mathcal{M}\gamma$ to probe the Higgs boson couplings to the light quarks is performed in different channels
- Search for $H \rightarrow e\mu$, $\tau \mu$, τe have reached sensitivities of $10^{-5} - 10^{-3}$
- With much improved analysis techniques, and increased integrated luminosity in Run3 and HL-LHC, we have great potential to observe many rare Higgs boson decay modes to probe new physics

		AIL-PHYS-PUB-2023-004
H→D*γ –	· · · · · · · · · · · · · · · · · · ·	0 136 fb ⁻¹ arXiv:2402.18731
H→K*γ –	ATLAS Proliminary	O 134 fb ⁻¹ PLB 847 (2023) 138292 -
Η→ωγ –		0 89.5 fb ⁻¹ PLB 847 (2023) 138292 -
Η→ργ —	√s = 13 TeV	9 32.3 fb ⁻¹ JHEP 07 (2018) 127 —
Η→φγ –		O 35.6 fb ⁻⁺ JHEP 07 (2018) 127 -
$H \rightarrow J/\psi\gamma$		O 139 fb ' EPJC 83 (2023) 781
$H \rightarrow \psi(2S)\gamma =$		O 139 fb ' EPJC 83 (2023) 781
$H \rightarrow I(1S)\gamma =$		O 139 ID EPJC 83 (2023) 781
$\Pi \rightarrow I(25)\gamma =$		
$\neg 1(33)\gamma =$	136 fb ⁻¹	O 139 ID EPJC 83 (2023) 781
$Z \rightarrow D^{\gamma}$	136 fb ⁻¹ arXiv:2402.18731	
$Z \rightarrow K_s \gamma$	89.5 fb ⁻¹ Pl B 847 (2023	3) 138292
$Z \rightarrow \omega \gamma$	32.3 fb ⁻¹ HEP 07 (2018)	3) 135232
$Z \rightarrow \omega \gamma$	O 35.6 fb ⁻¹ JHEP 07 (2018) 127	
$Z \rightarrow J/\psi\gamma$	O 139 fb ⁻¹ EPJC 83 (2023) 781	
$Z \rightarrow \psi(2S)\gamma$	0 139 fb ⁻¹ EPJC 83 (2023) 781	Expected + 1a
$Z \rightarrow \Upsilon (1S) \gamma$	O 139 fb ⁻¹ EPJC 83 (2023) 781	
$Z \rightarrow \Upsilon(2S)\gamma$	O 139 fb ⁻¹ EPJC 83 (2023) 781	Expected $\pm 2\sigma$ —
$Z \rightarrow \Upsilon(3S)\gamma$ –	O 139 fb ⁻¹ EPJC 83 (2023) 781	
$W^{\pm} \rightarrow \pi^{\pm} \gamma$	O 137 fb ⁻¹ arXiv:2309.15887	 Observed
$W^{\pm} \rightarrow \rho^{\pm} \gamma$	0 140 fb ⁻¹ arXiv:2309.15	5887 -
$W^{\pm} \rightarrow K^{\pm} \gamma$	O 137 fb ^{−1} arXiy:2309.15887	
10 ⁻⁷	10^{-6} 10^{-5} 10^{-5}	-4 10 ⁻³ 10 ⁻² 10 ⁻
10		
	95% CL Upper Lin	nit on Branching Fraction