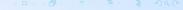


Prague in 1835 by Vincenc Morstadt

Searches for resonances decaying to pairs of Higgs bosons in ATLAS

Andrea Coccaro


International Conference in High Energy Physics 19 July 2024

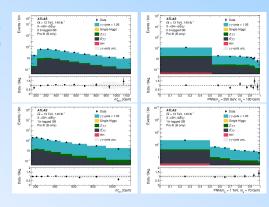
Introduction

Zoology of Higgs-pair resonance search program at ATLAS

- New particles in many BSM theories
 - no fine tuning of model choice and its parameters
 - generic spin-0 scalar in narrow-width approximation
 - Kaluza-Klein spin-2 graviton in Randall-Sundrum model
- ▶ Two Higgs Doublet Model; $X \rightarrow HH$
 - second Higgs doublet introduced in the theory
 - a total of 5 Higgs bosons is hence predicted
 - ightharpoonup coupling H o hh allowed with h corresponding to the Higgs boson at 125 GeV
- ▶ Two Real Singlet Model; $X \rightarrow SH$
 - SM extension with two real scalar singlets
 - a total of 3 Higgs bosons
 - ightharpoonup masses not predicted, typical searches focus on $X \to SH$ decay

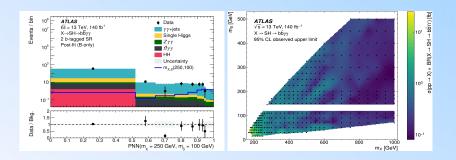
Outline

- 1. $X \rightarrow S(\rightarrow bb)H(\rightarrow \gamma\gamma)$ [submitted to JHEP, arXiv:2404.12915]
- 2. $X \rightarrow S(\rightarrow WW/ZZ)H(\rightarrow \gamma\gamma)$ [submitted to JHEP, arXiv:2405.20926]
 - 3. $X \rightarrow S(\rightarrow WW/ZZ)H(\rightarrow \tau\tau)$ [JHEP 10 (2023) 009]
 - **4.** VBF HH \rightarrow 4b [submitted to Phys. Lett. B, arXiv:2404.17193]
 - **5.** $X \rightarrow HH$ combination [Phys. Rev. Lett. 132 (2024) 231801]


$$X \rightarrow S(\rightarrow bb)H(\rightarrow \gamma\gamma)$$

[submitted to JHEP, arXiv:2404.12915]

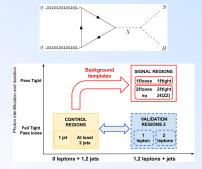
$X \to S(\to bb)H(\to \gamma\gamma)$

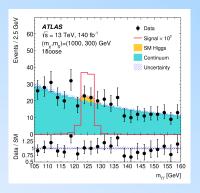

- resonant production of heavy scalar X
- number of b-tagged jets to categorise events into two SRs
- events in the SRs also required to satisfy $120 < m_{\gamma\gamma} < 130 \text{ GeV}$
- parametrised neural networks to provide continuous sensitivity in the (m_X, m_S) plane
- maximum likelihood fit on the binned PNN output distribution

$$m_{bb\gamma\gamma}^* = m_{bb\gamma\gamma} - (m_{\gamma\gamma} - 125 \text{ GeV})$$

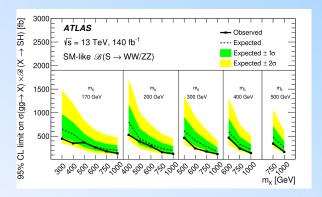
 $m_{b\gamma\gamma}^* = m_{b\gamma\gamma} - (m_{\gamma\gamma} - 125 \text{ GeV})$

Results


- ▶ 95% CL upper limits on $\sigma(pp \to X) \times \mathcal{B}(X \to SH \to bb\gamma\gamma)$
- limits ranging from 38 fb to 0.09 fb

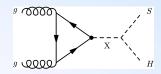

$$X \rightarrow S(\rightarrow WW/ZZ)H(\rightarrow \gamma\gamma)$$

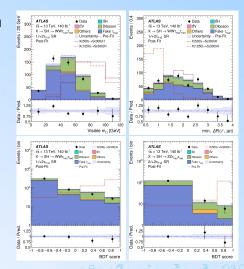
[submitted to JHEP, arXiv:2405.20926]


$X \rightarrow S(\rightarrow WW/ZZ)H(\rightarrow \gamma\gamma)$

- ightharpoonup signature 1 or 2 leptons, e or μ , and photons
- binned likelihood fit in six $m_{\gamma\gamma}$ SRs defined with 1 ℓ tight, 1 ℓ loose, 2 ℓ tight, 2 ℓ loose, $e\mu$, 2 ℓ

Results

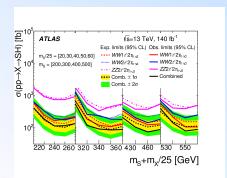

- ▶ 95% CL upper limits on $\sigma(gg \to X) \times \mathcal{B}(X \to SH)$ under the assumption of SM-like branching ratios for $S \to WW/ZZ$
- Imits also presented under the assumptions of $\mathcal{B}(S o WW) = 100\%$ and $\mathcal{B}(S o ZZ) = 100\%$

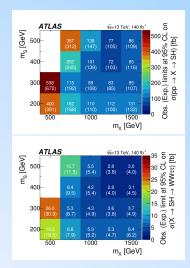

$$X \rightarrow S(\rightarrow WW/ZZ)H(\rightarrow \tau\tau)$$

[JHEP 10 (2023) 009]

$X \rightarrow S(\rightarrow WW/ZZ)H(\rightarrow \tau\tau)$

- two hadronically-decaying tau leptons and one or two light leptons
- three signal regions according to number of light leptons and m_{ll} , $WW1\ell2\tau_{had}$, $WW2\ell2\tau_{had}$, $ZZ2\ell2\tau_{had}$
- BDTs to separate signal and background with m_X provided as input parameter and assigned randomly for background
- binned likelihood fit on a BDT score trained on 14 event-based observables

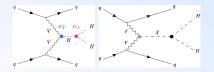




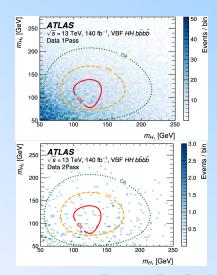
Andrea Coccaro

Results

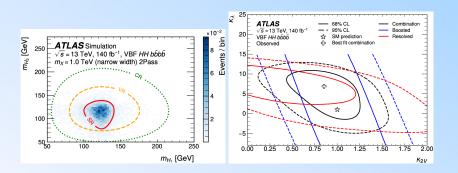
- ▶ 95% CL upper limits on $\sigma(pp \to X \to SH)$ for the three channels and their statistical combination
- ▶ limits in the 72 542 fb range



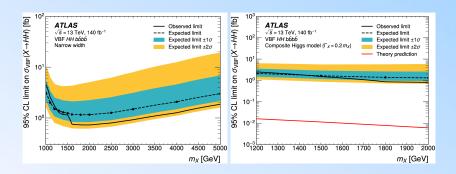
$\mathsf{VBF}\;\mathsf{HH}\to \mathsf{4b}$


[submitted to Phys. Lett. B, arXiv:2404.17193]

VBF HH \rightarrow 4b


- various non-resonant diagrams considered in addition, and for the first time, to the resonant production mode
- analyses targeting the boosted regime
- CRs, VRs and SRs defined in the 2D Higgs boson mass planes
- 1Pass and 2Pass selections based on one or two of the leading large-R jets tagged as containing two b-jets
- binned maximum likelihood fit on a mass-parametrised BDT output that discriminates signal events from background

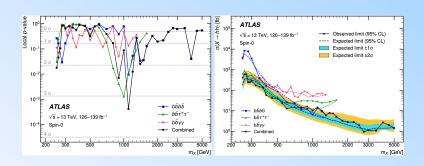
Andrea Coccaro



VBF HH \rightarrow 4b

- Likelihood contours at 68% and 95% CL in the $k_{\lambda}-k_{2V}$ plane
- resolved, boosted and combined all shown

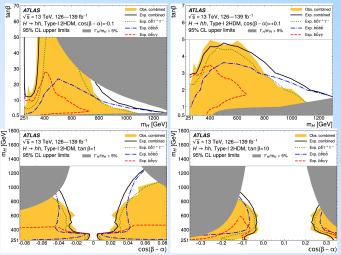
Results



- ▶ 95% CL upper limits on spin-0 heavy resonance cross-section with narrow-width and broad-width approximations and assuming the SM $H \rightarrow bb$ branching ratio
- theoretical prediction is for the Composite Higgs Model at leading order

$X \rightarrow HH$ combination

[Phys. Rev. Lett. 132 (2024) 231801]


$X \rightarrow HH$ combination

- lacktriangle combination of $bb\gamma\gamma$, bb au au and 4b channels with full Run-2 data
- each channel contributing the most at different resonance masses
 - $bb\gamma\gamma$ until $m_X\lesssim 350$ GeV, bb au au in $350\lesssim m_X\lesssim 800$ GeV, 4b for $m_X\gtrsim 800$ GeV

<ロ> < 回 > < 回 > < 巨 > < 巨 > 三 目 : り < ()

Exclusion in the 2HDM parameter space

▶ 95% CL limit on the Type-I 2HDM parameter space

Conclusions

Wide experimental program targeting Higgs boson pairs

- both resonant and non-resonant
- improvements in object reconstruction and identification is as important as getting more data
- many decay channels being investigated with the full Run-2 dataset
- individual analysis on full Run-2 dataset yields better results compared to combined analyses with partial Run-2 dataset

Run-2 search program keeps going together with first analyses on Run-2 + Run-3 data!

THANK YOU FOR YOUR ATTENTION!

Conclusions

Wide experimental program targeting Higgs boson pairs

- both resonant and non-resonant
- improvements in object reconstruction and identification is as important as getting more data
- many decay channels being investigated with the full Run-2 dataset
- individual analysis on full Run-2 dataset yields better results compared to combined analyses with partial Run-2 dataset

Run-2 search program keeps going together with first analyses on Run-2 + Run-3 data!

THANK YOU FOR YOUR ATTENTION!