Prospects for Single- and Di-Higgs Measurements at the HL-LHC with the ATLAS Experiment

Song-Ming Wang Academia Sinica

On behalf of the ATLAS Collaboration

ICHEP 2024 PRAGUE

42nd International Conference on High Energy Physics

18-24 July 2024 Prague Czech Republic

Higgs Physics

- •In Standard Model (SM) all Higgs properties are defined once its mass is known
- •Still many open questions in SM
- •Alternate theories predict different properties of the Higgs boson, and/or existence of more Higgs bosons
- •Higgs self-coupling (λ_{HHH}) determines the shape of the Higgs potential, and links to the naturalness/hierarchy problem
- •After Higgs boson was discovered 12 years ago, vast program was launched to measure its properties with ATLAS Run 1 + Run 2 data
- •However larger data sample is needed for
 - •Precision measurements to check compatibility with SM predictions
 - •To observe any deviation from the SM expectation that hints new physics
 - •Precise measurement of the Higgs potential which determines the dynamics of the Higgs field

Where Do We Stand Now : Single-Higgs

- •Observed main production channels (ggF, VBF, VH, ttH), and couplings to gauge bosons ($\gamma\gamma$,WW,ZZ) and 3rd gen. fermions (τ , b, t)
- •Productions, decays and couplings are measured at O(10%) precision in best channels
- •Probing couplings to 2nd gen. ferimons and rare decay
 - $H \rightarrow \mu \mu (@ 2\sigma), H \rightarrow Z\gamma (@ 2.2\sigma)$
 - $\sigma(VH(\rightarrow cc)) : < 11.3 \times \text{SM observed (95\%CL)}$ NEW!
 - see Francesco Armando Di Bello's talk

- •Probe kinematic features of Higgs boson
 - E.g. pT(H), $|y_H|$, Njet, pT(lead jet)
 - pT(H) precision:
 - •~20-30% @<300 GeV
 - ~60% @ 300-650 GeV

JHEP 05 (2023) 028

Where Do We Stand Now : Di-Higgs

arXiv:2406.09971

•Recent combined results from several searches with full Run 2 data

• Obs (exp) = $2.9 (2.4) \times SM$ •Significance : Obs (exp) = $0.4 (1.0) \sigma$ κ_λ constrained at 95% CL interval:
Obs (exp) = [-1.2, 7.2] ([-1.6, 7.2])

- Run 2: $\int L \sim 140 \text{ fb}^{-1}$, $\sqrt{s}=13 \text{ TeV}$
- Run 3: expected $\int L \sim 250 \text{ fb}^{-1}$, $\sqrt{s}=13.6 \text{ TeV}$
- HL-LHC:
 - •√s=13.6-14 TeV
 - $L \sim 5-7 \times 10^{34} \text{cm}^{-2} \text{s}^{-1}$
 - ∫*L*~3000 fb⁻¹
 - •Ave. #of interactions per crossing ~140-200

- •High lumi and pileup pose challenging conditions to the experiment
 - •Larger beam background and detector irradiation, higher trigger rates, higher particle density in detector
- •Require improvements in many areas of the experiment:
- •Detector, trigger and readout electronics, software and computing, analysis techniques

ATLAS Upgrade for HL-LHC

Muon Detectors

Tile Calorimeter

High Granularity Timing Detector (HGTD)

Forward region (2.4< $|\eta|$ <4.0) Low-Gain Avalanche Detectors (LGAD) with 30 ps track resolution

Upgraded Trigger and Data Acquisition system

Level-O Trigger at 1 MHz Improved High-Level Trigger (150 kHz full scan tracking)

Electronics Upgrades

LAr Calorimeter, Tile Calorimeter, Muon System

New Muon Chambers

Inner barrel region with new RPC and sMDT detectors

Additional small upgrades

Luminosity detectors (1% precision goal) HL-ZDC

Toroid Magnets

New Inner Tracking Detector (ITK)

SCT Tracker Pixel Detector TRT Tracker

All silicon, up to $|\eta|=4$

Solenoid Magnet

Liquid Argon Calorimeter

Detector Expected Performance

ATL-PHYS-PUB-2021-023

- •Good muon reconstruction and identification efficiency efficiency at high pileup
- •Important for measuring Higgs boson kinematic features and properties

ATL-PHYS-PUB-2021-024

- b-jet identification performance at $<\mu>=200$ is similar (or better) compare to Run2 at $<\mu>=38$
- •Plays crucial role in HH search, where most sensitive channels have at least a bb pair

Physics Projection to HL-LHC

•Assume center of mass energy at 14 TeV and total integrated luminosity is 3000 fb⁻¹

•Methods for projection:

- •Detailed simulations are used to access performance of upgraded detector and HL-LHC condition
- •Extrapolate existing results or parametric simulations to allow full re-optimization of the analyses

•Systematic uncertainties scenarios :

•Run 2 ("S1") :

•Use Run2 uncertainties, assuming the higher pile-up effects will be compensated by detector upgrades

•Theoretical uncertainties halved :

•Use Run 2 uncertainties, but reduce theoretical uncertainties by half

•No systematic uncertainties :

•Only consider statistical uncertainty

•Baseline ("S2") :

- •Theory uncertainties $\frac{1}{2}$ of Run 2
- •No simulation statistical uncertainty
- •luminosity uncertainty ~1%
- •Statistical uncertainty reduced by $1/\sqrt{L}$
- •Uncertainties due to detector limitations remain unchanged or revised according to simulation studies of upgraded detector.

*** Baseline scenario is used in presented projected results, unless specified otherwise

HL-LHC Projection : Single-Higgs

Projections for Production and Couplings Measurements

•Combined all major production/decay mode measurements

- ggF can be measured at $\sim 2\%$
- WH can be measured at $\sim 8\%$

- •Reaching few % precision
- μ and $Z\gamma$ reaching ~10% precision, dominated by statistical uncertainties

•Most measurements' uncertainties are dominated by systematics

Projections for Differential and Mass Measurements

• pT(H):

•Expect to probe with precision of

- •~5% at pT(H) < 350 GeV
- •~10% at pT(H) ~350-1000 GeV
- Low pT: sensitive to couplings to c, b quarks
- High pT: sensitive to new heavy particles in ggF loop

ATL-PHYS-PUB-2018-040	CERN-2019-007
ATL-PHYS-PUB-2018-054	

Higgs Mass

•At LHC, most precise H mass measurement is via

- $H \rightarrow \gamma \gamma$, $H \rightarrow ZZ \rightarrow 4l$ decays
- •Current PDG average (ATLAS+CMS):
 - $m_{\rm H} = 125.20 \pm 0.11 \ GeV$

•ATLAS most recent measurement (Run 1+2):

 ${}^{\bullet}m_{\rm H} = 125.11 \pm 0.09 \pm (stat) \pm 0.06 (syst)$ = 125.11 ± 0.11 GeV

•Extrapolated ATLAS Run 2 (36 fb⁻¹) 4 μ results to 3000 fb⁻¹

•Total uncertainty vary from 52 to 33 MeV

Expected Higgs mass precision with 3 ab⁻¹ (ATLAS)

	$\Delta_{\rm tot}$ (MeV)	$\Delta_{\rm stat}$ (MeV)	$\Delta_{\rm syst}$ (MeV)
Current Detector (Run 2, S1 scenario)	52	39	35
μ momentum resolution improvement by 30% or similar	47	30	37
μ momentum resolution/scale improvement of 30% / 50%	38	30	24
μ momentum resolution/scale improvement 30% / 80%	33	30	14

•Expect better resolution from CMS (stronger mag. field)
→ expect uncertainty < 20 MeV when CMS+ATLAS

Projections for Higgs coupling to Charm, Bottom

- •H(\rightarrow cc), H(\rightarrow bb) couplings are probed via VH production
- •Projection with an earlier full Run-2 results
- •Expected best fit signal strengths:
 - $\mu_{VH}^{bb} = 1.00 \pm 0.06$
 - $\mu_{VH}^{cc} = 1.00 \pm 3.20$
- •Expected constraint of $|\kappa_c/\kappa_b|$
 - $|\kappa_c / \kappa_b| < 2.7$ at 95% CL
- •Projection for $VH(\rightarrow cc)$ will be significantly improved when extrapolated from latest Run 2 results
 - e.g. improved flavor tagging, use MVA

ATL-PHYS-PUB-2021-039

- •Higgs to charm coupling will still be difficult at HL-LHC
 - •Will require improvement in the analysis method, better c-jet tagging, advance multivariate techniques

Projection for LFV of Higgs Decay

- •Lepton Flavor Violation (LFV) Higgs decay is predicted in several BSM models (e.g. extended Higgs sector, composite Higgs, warped extra dimensions)
- •Recent ATLAS direct search (Run2, 139 fb⁻¹) set 95% CL limits:
- BR($H \rightarrow e\tau$) = 0.2% (expt. 0.12%), BR($H \rightarrow \mu\tau$) = 0.18% (expt. 0.09%)
- •Extrapolated this Run2 result to project search sensitivity at HL-LHC

Alternative: simulation statistical uncertainty scaled by $1/\sqrt{L}$

- •Projected expected limit on BR at 95% CL:
 - BR($H \rightarrow e\tau$) = 0.024^{+0.010}/_{-0.007} %
 - BR($H \rightarrow \mu \tau$) = 0.024^{+0.010}_{-0.007} %

•A factor of ~3-5 improvement over Run2 results

 JHEP 07 (2023) 166
 ATL-PHYS-PUB-2022-054

HL-LHC Projection : Di-Higgs

Projection for $HH \rightarrow bb\gamma\gamma$, $bb\tau\tau$, bbbb

Most sensitive decay modes :

- •HH→bbbb : highest BR, large BG from multi-jets
- •HH \rightarrow bb $\gamma\gamma$: clean, but small BR
- •HH \rightarrow bb $\tau\tau$: moderate BG and BR
- •Extrapolated the full Run 2 results of the three most sensitive channels to project reach at HL-LHC

•HH discovery significance:

- •New individual and combined projection significantly improved over previous projection
- •New ATLAS combined projection (stat. only) : 4.9 σ
- •Previous ATLAS+CMS combined projection (stat. only) : 4.5 σ
- •Large improvement achieved over last few years
 - •update to object recon. and identification, analysis methods

	Significance $[\sigma]$				Combined signal
Uncertainty scenario	$bar{b}\gamma\gamma$ b	$bar{ au}^+ au^-$	bbbb C	Combination	strength precision [%]
No syst. unc.	2.3 (2.1)	4.0 <mark>(2.5</mark>)	1.8 (1.4) 4.9 (3.5)	-21/+22
Baseline	2.2(2.0)	2.8(2.1)	0.99 <mark>(0.6</mark>	1) 3.4 (3.0)	-30/+33
Theoretical unc. halved	1.1	1.7	0.65	2.1	-47/+48
Run 2 syst. unc.	1.1	1.5	0.65	1.9	-53/+65

•Numbers in red are from previous projection

CERN-2019-007

Projection for HH \rightarrow bb\gamma\gamma, $bb\tau\tau$, bbbb

- •Higgs self-coupling modifier (κ_{λ}) :
 - Constraint within (Baseline scenario) :
 - [0.5, 1.6] at 68% CL
 - [0.0, 2.5] at 95% CL

- •At HL-LHC, systematic uncertainty become limiting factor
- •Sensitivity driven by:
 - •Theoretical uncertainties:
 - •HH production
 - •Single H production w/ b-jets
 - •Background modeling
 - •Object reconstruction and identification performance (e.g. b-tagging, tau ID)

What's Coming for Run 3

•Benefit from increase signal acceptance with new triggers, improved object ID, and more refined analyses,...

Summary

•HL-LHC will bring many times more data than we have now

•Provide great opportunity for Higgs precision measurements

•Higgs productions and decays can be measured to a few percent precision

•May reach 3 σ evidence for HH search by ATLAS

• 5 σ discovery is within reach if we continue to improve the analysis and detector performance, and combine both CMS and ATLAS results.

•However HL-LHC will present many challenges that require many improvements and novel ideas for a successful program

ATLAS Talks on Higgs and HL-LHC Upgrades at ICHEP-2024

- •<u>Measurement of the ttH->bb process with the ATLAS experiment</u> : Zefran Rozario
- •Measurements of Higgs boson production with top quarks with the ATLAS detector : Filip Nechansky
- •Measurements of the Higgs boson mass and width with the ATLAS detector : Rafael Coelho Lopes De Sa
- •Measurements of Higgs boson coupling properties to tau leptons with the ATLAS detector : Christopher Young
- •Measurements of the CP structure of Higgs-boson couplings with the ATLAS detector : Matthew Joseph Basso
- •<u>Measurements of Higgs boson cross-sections and their interpretation with the ATLAS experiment</u> : Xiao Yang
- •<u>Measurements of Higgs boson coupling properties to bottom quarks and charm quarks with the ATLAS detector</u> : Francesco Armando Di Bello
- <u>Probing the nature of electroweak symmetry breaking with Higgs boson pairs in ATLAS</u> : Dilia Maria Portillo Quintero
- Search for rare processes and lepton-flavor-violating decays of Higgs boson at the ATLAS experiment : Bing Zhou
- •<u>Search for HH or X->SH production in final states with one or two light leptons and a pair of tau-leptons with the</u> <u>ATLAS detector</u>: Babar Ali
- •Searches for singly- and doubly-charged Higgs bosons in ATLAS : Yasuyuki Horii
- •Searches for resonances decaying to pairs of Higgs bosons in ATLAS : Andrea Coccaro
- •Searches for axion-like-particles (ALPs) in Higgs boson decays in ATLAS : Paula Martinez Suarez
- ATLAS upgrades for High Luminosity LHC : Joleen Renee Pater
- •LUCID-3: the upgrade of the ATLAS Luminosity detector for High Luminosity LHC : Jack Lindon
- Towards an ATLAS luminosity measurement at HL-LHC : Christian Ohm
- •Integration test of a new inner-station TGC system for the ATLAS experiment at HL-LHC : Arisa Wada
- Expected performance of the ATLAS ITk detector for HL-LHC : Helen Hayward
- The High-Granularity Timing Detector for ATLAS at HL-LHC : Alexander Leopold