Searches for axion-like-particles (ALPs) in Higgs boson decays in ATLAS

Paula Martínez, on behalf of the ATLAS Collaboration Institut de Física d'Altes Energíes (IFAE-UAB)

20/07/2024

ICHEP 2024 | Prague

Introduction to axion-like particles (ALPs)

ALPs are **pseudoscalar particles** that appear in many well-motivated extensions of the SM, such as:

Supersymmetry (e.g. NMSSM) Axion models

Dark/extended Higgs sectors ...

They are pseudo-NG bosons generated by the **spontaneous breaking** of an approximate global symmetry, and can naturally be **light** w.r.t. the EW scale.

In general, **ALP phenomenology** is studied using broader models, e.g.: 2HDM+S [1] ALP EFT [2] which can be later reinterpreted.

ALP searches in ATLAS

There is a rich program in ATLAS for the study of light spin-0 resonances in different production modes and decay channels:

Previously published analyses $tta, a \rightarrow \mu \mu$ $gg \to X \to \gamma \gamma$ $H \rightarrow bb + E_{\tau}^{\text{miss}}$ > 139 fb⁻¹@ 13 TeV $H \rightarrow aa \rightarrow bb \mu \mu$ $H \rightarrow Za \rightarrow \ell\ell(gg/ss)$ $H \rightarrow XX/ZX \rightarrow 4\ell$ $H \rightarrow aa \rightarrow \gamma \gamma gg$ > 36 fb⁻¹@ 13 TeV $H \rightarrow aa \rightarrow 4h$ $H \rightarrow aa \rightarrow 4\gamma$ 20 fb⁻¹@ 8 TeV $H \rightarrow aa \rightarrow \mu \mu \tau \tau$

$H \rightarrow aa \rightarrow bb\tau\tau$

arXiv:2407.01335 | Submitted to: Phys. Rev. D. [3] ATL-PHYS-PUB-2022-042

Search for the decay of a SM Higgs boson into two light light pseudoscalars. *m_a* from 12 to 60 GeV.

Main backgrounds: τ_{had} -fakes, e/μ -fakes, tt+jets and Z+jets.

 $a \rightarrow bb$

Boosted for low m_a ($a \rightarrow B$)

Resolved for high $m_a (a \rightarrow bb)$

 $a \rightarrow \tau \tau$

3 channels: $e\tau_{had}$, $\mu\tau_{had}$, $e\mu$ (~50% of τ decays) *b*-jets refer to a jet originating from a single *b*-hadron.

- They have a radius R = 0.4.

B-jets are a boosted *bb* pair that can not be reconstructed as 2 *b*-jets.

- They are identified by a dedicated tagger (DeXTer) [3] using low-level tracks and secondary vertices up to R = 0.8.

$H \rightarrow aa \rightarrow bb\tau\tau$

Event selection

- $e/\mu/e\mu$ triggers with low $p_{\rm T}$ threshold.
- *b*-jet $p_{\rm T} > 15~{\rm GeV}$
- $B-jet p_T > 20 GeV$ - 9 categories ⇒

V	$(e\mu, 1B)$	$(e\mu, 1b)$	$(e\mu,2b)$
	$(\mu au_{ m had}, 1B)$	$(\mu au_{ m had}, 1b)$	$(\mu au_{ m had}, 2b)$
	$(e\tau_{\rm had}, 1B)$	$(e\tau_{\rm had}, 1b)$	$(e au_{ m had}, 2b)$

Background modelling

Z+jets and **tt+jets** MC is corrected using a data-driven reweighting.

Non-prompt (fake) rates for $e/\mu/\tau_{had}$ are estimated in same-sign regions.

Analysis strategy

 $m_{a \to \tau \tau}$ can not be reconstructed due to ν in τ_{lep} .

Missing mass calculator (MMC)

 \Rightarrow maximum likelihood estimate of the ν 4-momenta.

 \Rightarrow most probable value of $m_H = m_{MMC}(bb\tau\tau)$, etc.

SvsB discrimation via m_a -parametrised NN.

Paula Martínez (IFAE-UAB)

$H \rightarrow aa \rightarrow bb\tau\tau$

Upper limits on BR($H \rightarrow aa \rightarrow bb\tau\tau$)

Improved limit at low m_a w.r.t. previous studies thanks to new techniques targetting the boosted $a \rightarrow bb$ decays. CMS result: Eur. Phys. J. C 84 (2024) 493

$H \rightarrow aa \rightarrow 4\gamma$

- Search for the decay of a SM Higgs boson into two light pseudoscalars.
- m_a from 0.1 to 62 GeV.

• **Main backgrounds**: di- γ and non-resonant multi-jet.

ALP lifetime
$$\frac{1}{\tau} \propto m_a^3 \left| \frac{C_{\gamma\gamma}}{\Lambda} \right|^2$$
, $\Lambda = 1$ TeV $C_{\gamma\gamma} \ge 0.1$ $D^{-5} \ge C_{\gamma\gamma} \ge 0.1$ $D^{-5} \ge C_{\gamma\gamma} \ge 0.1$ $D^{-5} \ge C_{\gamma\gamma} \ge 0.1$ $D^{-5} \ge D^{-5}$ $D^{-5} \ge D^{-5}$ <

arXiv:2312.03306 | Submitted to: Eur. Phys. J. C

$H \rightarrow aa \rightarrow 4\gamma$

Boosted $\gamma\gamma$ reconstructed as one **merged** γ .

- NN1 to separate merged γ from 'fake γ ' (jets). - NN2 to separate merged γ from single γ .

Resolved $\gamma\gamma$ reconstructed using stardard identification criteria (ECal energy deposits and energy leakage into HCal).

Event selection and analysis strategy

- Di- γ trigger.
- $-E_{\mathrm{T}}^{\gamma} \ge 15$ GeV.
- Merged SRs \Rightarrow 2M, 1M1S, 2S.
- Resolved SRs \Rightarrow 3S, 4S.

Additionally, selection based on:

- $-\ m_a^{\rm reco}$ = best $a \rightarrow \gamma \gamma$ pairing (NN for 3S and 4S)
- $-m_{
 m inv}^{
 m reco}$ = invariant mass of all γ candidates $pprox m_H$

 $m_{\rm inv}^{\rm reco}$ sidebands used for background estimation.

$H \rightarrow aa \rightarrow 4\gamma$

Phys. Lett. B 848 (2024)

$H \rightarrow Za \rightarrow \ell \ell \gamma \gamma$

- Search for the decay of a SM Higgs boson into a Z boson + light pseudoscalar.
- *m_a* from 0.1 to 33 GeV
- **Main backgrounds**: $Z\gamma$ and Z+jets.

ALP lifetime & mass

Prompt ALP decays (
$$L_{xy} \le 33$$
 mm).
 $m_a < 2 \text{ GeV} \Rightarrow \text{merged } a \rightarrow \gamma \gamma$
 $m_a \ge 2 \text{ GeV} \Rightarrow \text{resolved } a \rightarrow \gamma \gamma$

Event selection
- Lepton triggers to select
$$Z \rightarrow \ell \ell$$

 $-p_{T}^{\ell 1} > 27 \text{ GeV}$ and $p_{T}^{\ell 2} > 20 \text{ GeV}$
 $-\Delta R_{\ell \ell} > 0.2$
 $-|m_{\ell \ell} - m_Z| < 10 \text{ GeV}$
 $-p_{T}^{\ell \ell} > 10 \text{ GeV}$

+ Resolved regime - At least 2 γ with $p_T^{\gamma} > 10$ GeV and $\Delta R_{\gamma\gamma} < 1.5$ - 0.96 < X < 1.2 with $X = \frac{\Delta R_{\gamma\gamma} p_T^{\gamma\gamma}}{2m_{\gamma\gamma}}$ - Best di- γ pair with X closest to 1 - $|m_{Z\gamma\gamma} - m_H| < 15$ GeV

+ Merged regime

- One merged
$$\gamma$$
 with $p_{T}^{\gamma} > 20 \text{ GeV}$

$$|m_{Z\gamma} - m_H| < 10 \text{ GeV}$$

- Fake jet veto

Phys. Lett. B 848 (2024)

 $H \rightarrow Za \rightarrow \ell \ell \gamma \gamma$

Resolved regime

Data-driven background estimation using an analytic model, calculated in a control region with $|m_{Z\gamma\gamma} - m_H| > 15$ GeV.

Binned maximum likelihood fit to $m_{\gamma\gamma}$.

Merged regime

MC simulation for background with data-driven corrections estimated in a control region with $|m_{Z\gamma} - m_H| > 10$ GeV.

Binned maximum likelihood fit to $\Delta R_{Z\gamma}$ in the SR and E_{ratio} in the sidebands.

Phys. Lett. B 848 (2024)

 $H \rightarrow Za \rightarrow \ell \ell \gamma \gamma$

Upper limits on BR($H \rightarrow Za, a \rightarrow \gamma \gamma$)

BR above ~2% excluded for $m_a < 2$ GeV. BR above ~0.1% excluded for $m_a > 2$ GeV.

Exclusion limits in the ALP EFT

Limits on $C_{\gamma\gamma}$ for different values of C_{ZH} .

Paula Martínez (IFAE-UAB)

Summary

- ALPs appear in many different BSM models, and could be used to explain phenomena such as EW baryogenesis, dark matter or the g 2 anomalies.
- Light ALPs with $m_a < m_H$ are easily reachable at LHC energy, and can be studied in many different production modes and decay channels.
- Today, 4 recently published ALP searches have been presented:

 $\begin{array}{l} H \rightarrow aa \rightarrow bb\tau\tau \\ H \rightarrow aa \rightarrow 4\gamma \\ H \rightarrow Za \rightarrow \ell\ell\gamma\gamma \end{array}$

This is only the tip of the iceberg
 ⇒ Lots of other analyses already published, and many more to come!

Thank you for your attention

Source: Webb Telescope

BACKUP

Summary plots from $H \rightarrow aa$ and $H \rightarrow Za$ searches

 $CMS H \rightarrow aa \rightarrow 4\gamma$

JHEP 07 (2023) 148 Phys. Rev. Lett. 131 (2023) 101801

 $\mathsf{CMS}\, H \to Za \to \ell \ell \gamma \gamma$

CMS-PAS-HIG-22-003

ALPs in other production modes

tta, $a \rightarrow \mu \mu$

Event selection
- 2 channels:
$$e\mu\mu$$
 and $\mu\mu\mu$.
 $\mu\mu = \mu^{-}\mu^{+}$ with min($|m_{a} - m_{\mu^{-}\mu^{+}}|$).
 $-p_{T}^{e \text{ or }\mu} > 27 \text{ GeV.}$
 $-p_{T}^{\mu} > 15 \text{ GeV.}$
 $- 12 < m_{\mu\mu} < 77 \text{ GeV.}$
 $- m_{\mu\mu} < 77 \text{ GeV.}$

• Search for a light pseudoscalar produced in association with a *tt* pair \Rightarrow trigger on ℓ from *t*-decay.

- m_a between 15 and 72 GeV, m_{H^+} between 120 and 160 GeV.
- $a \rightarrow \mu \mu$ decay = good resolution and background rejection.
- **Main backgrounds**: di- ℓ *tt*+jets with μ -fakes and *ttZ*.

tta, $a \rightarrow \mu \mu$

Signal modelling

 $m_{\mu\mu}$ modelled using a double-sided crystal ball function.

Calculated separately for $e\mu\mu$ and $\mu\mu\mu$ and the *tta* and H^+ signals.

Background modelling

Backgrounds with **prompt** leptons are estimated using **MC simulation**.

- *ttZ*, *ttH*, *ttW*, *tZ*, di-boson,...

Backgrounds with **non-prompt** leptons are dominated by di- ℓ *tt* + 1 μ -fake \Rightarrow **estimated from data**.

tta, $a \rightarrow \mu \mu$

Upper limits on H^+ production

CMS result: Phys. Rev. D 123 (2019) 131802

