

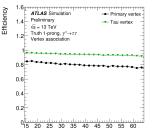
Chris Young, CERN

1/17

19th July 2024

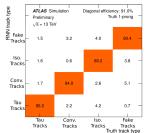
Chris Young, CERN

Introduction


- The *τ*-lepton is the heaviest lepton and therefore has the largest coupling to the Higgs boson.
- ▶ This motivates studying the process $H \rightarrow \tau \tau$ to probe the couplings to leptons.
- ► The branching ratio of H → ττ is 6% which results in it being in a unique position of having sufficient statistics and low enough backgrounds for precise measurements of Higgs production.
- Today I will go through 2 measurements that take advantage of this:
 - $VH(\rightarrow \tau \tau)$ Analysis released December 2023
 - Updated STXS results First seen at LHCP last month
- ► These represent some of the legacy Run 2 ATLAS results in this channel!
- ▶ Looking to Run 3, where over 100 fb⁻¹ have already been recorded, we can expect in the future further precise measurements in this channel, but as analyses are complicated the focus has been on exploiting the Run 2 data with the best possible precision.

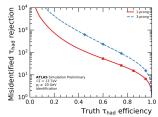
Chris Young, CERN

- τ -leptons decay either into a lepton and 2 ν , $\tau_{\rm lep}$, or hadronically with 1 ν , $\tau_{\rm had}$.
- Both leptonic and hadronic decays are used in these analysis with the lepton reconstruction following the usual ATLAS electron and muon reconstruction.
- The majority of hadronic τ -lepton decays consist of 1 or 3 charged particles.
- Additionally, calorimeter information as well as track displacement and secondary vertex information are also key for their reconstruction.
- For Run 3 new algorithms have been developed to:
 - correctly identify the au production vertex



Chris Young, CERN

- au-leptons decay either into a lepton and 2 ν , $au_{
 m lep}$, or hadronically with 1 ν , $au_{
 m had}$.
- Both leptonic and hadronic decays are used in these analysis with the lepton reconstruction following the usual ATLAS electron and muon reconstruction.
- The majority of hadronic τ -lepton decays consist of 1 or 3 charged particles.
- Additionally, calorimeter information as well as track displacement and secondary vertex information are also key for their reconstruction.
- ► For Run 3 new algorithms have been developed to:
 - correctly identify the au production vertex
 - a recurrent neural network to classify tracks



Chris Young, CERN

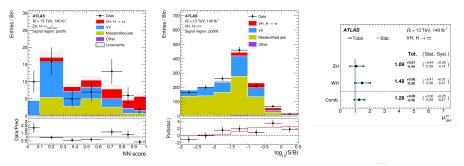
- τ -leptons decay either into a lepton and 2 ν , $\tau_{\rm lep}$, or hadronically with 1 ν , $\tau_{\rm had}$.
- Both leptonic and hadronic decays are used in these analysis with the lepton reconstruction following the usual ATLAS electron and muon reconstruction.
- The majority of hadronic τ -lepton decays consist of 1 or 3 charged particles.
- Additionally, calorimeter information as well as track displacement and secondary vertex information are also key for their reconstruction.
- For Run 3 new algorithms have been developed to:
 - correctly identify the τ production vertex
 - a recurrent neural network to classify tracks
 - a RNN to identify au-leptons against jets and a separate one to veto electrons

Chris Young, CERN

- τ -leptons decay either into a lepton and 2 ν , τ_{lep} , or hadronically with 1 ν , τ_{had} .
- Both leptonic and hadronic decays are used in these analysis with the lepton reconstruction following the usual ATLAS electron and muon reconstruction.
- The majority of hadronic τ -lepton decays consist of 1 or 3 charged particles.
- Additionally, calorimeter information as well as track displacement and secondary vertex information are also key for their reconstruction.
- For Run 3 new algorithms have been developed to:
 - \blacktriangleright correctly identify the τ production vertex
 - a recurrent neural network to classify tracks
 - \blacktriangleright a RNN to identify $\tau\text{-leptons}$ against jets and a separate one to veto electrons
- These show promising improvements which will increase the sensitivity of future $H \rightarrow \tau \tau$ results and such performance improvements underpin many ATLAS analyses.

Chris Young, CERN

$VH(\rightarrow au au)$ Analysis



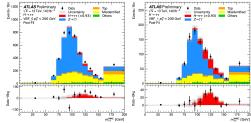
Chris Young, CERN

$VH(\rightarrow au au)$ Analysis

- ▶ For this analysis only leptonic decays of *W*, *Z* are considered with the hadronic ones covered by the next analysis I'll show.
- Neural Networks using the 4-vectors and derived quantities (eg. △R) is used to separate signal and background.
- ▶ 4 separate NNs are used for each of W, Z and $\tau_{lep}\tau_{had}, \tau_{had}\tau_{had}$.
- Overall 4.2 σ is seen over the case of no VH production and a signal strength of $\mu = 1.28 \pm 0.3(\text{stat})\pm 0.2(\text{sys})$ is achieved.

Chris Young, CERN

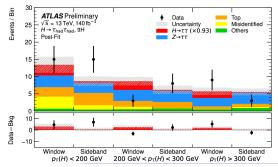
$H \rightarrow \tau \tau$ STXS Analysis



Chris Young, CERN

$H \rightarrow \tau \tau$ STXS Analysis: Selection & Strategy

- Previously the full Run 2 dataset was used to measure various bins in the STXS framework [link]
- This previous analysis of the Run 2 data gave the highest precision measurement of the VBF process, but only measured the inclusive cross-section, and also presented the first ttH measurement in this channel.
- This new measurement improves significantly on the previous one splitting VBF into 8 kinematic regions and enhancing the ttH measurement using ML techniques.
- ► The strategy followed a similar path constructing *control regions* for the major backgrounds normalization (including using kinematic embedding for $Z \rightarrow \tau \tau$), and then fitting the mass distribution to separate the primary background (*Z*) from signal.
- A BDT was used as a final step to separate a high purity, low stats region from a low purity, high stats region.



Chris Young, CERN

$H \rightarrow \tau \tau$ STXS Analysis: $p_{\mathbf{T}}^{H}$ Reconstruction & ttH BDT

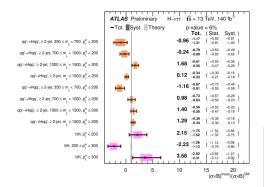
- Many aspects were optimized to produce this result, but some notable new developments include;
 - ▶ Using a neural network to reconstruct the Higgs p_T which results in a dramatic, 50%, improvement in the resolution
 - Optimizing the separation between the low and high stats regions
 - Using a multi-class boosted decision tree (BDT) to categorize the ttH events from Z and Top backgrounds with inverted cuts used to form control regions.



Chris Young, CERN

$H \rightarrow \tau \tau$ STXS Analysis: Results

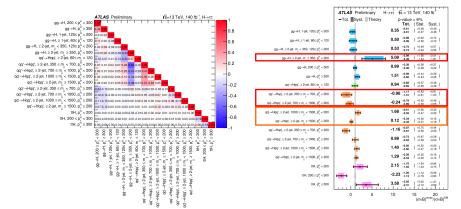
Reasonable agreement with SM with a p-value of 6%.



Chris Young, CERN

$H \rightarrow \tau \tau$ STXS Analysis: Results

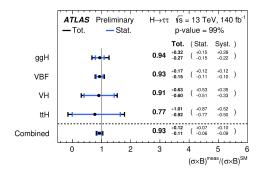
- ▶ Focusing on the new kinematic regions we have 8 VBF and 3 $t\bar{t}H$ regions.
- ▶ For VBF, this is the first measurement in multiple m_{jj} bins for the higher p^H_T selection and the most precise for the lower p^H_T selection, demonstating the power of this channel at probing VBF production.
- ▶ The *ttH* results remain statistically limited and additionally upper limits on the cross-section in each bin are derived for these regions.



Chris Young, CERN

$H \rightarrow \tau \tau$ STXS Analysis: Results – correlations

- It should also be noted that while there is some power from the analysis to separate ggF events which have high m_{jj} and VBF events there are still large anti-correlations between the ggF region and some of the VBF regions.
- This is reflected in the uncertainties on the measurements in these regions and also explains the reasonable overall p-value obtained.



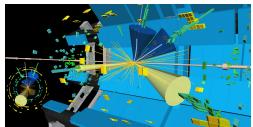
Chris Young, CERN

$H \rightarrow \tau \tau$ STXS Analysis: Results

- The fit is also performed for the four production modes, and for the case of a global modification of the signal strength which tests the Higgs coupling to τ-leptons (assuming no other new physics).
- These also show good agreement with the SM predictions.
- ▶ They also show improvements over the previous analysis due to the finer binning and analysis improvements with an 8% improvement in the global signal strength and a $\sim 25\%$ improvement in the $t\bar{t}H$ signal strength.

Chris Young, CERN

Conclusions



Chris Young, CERN

Conclusions

- ▶ I have shown the latest Run 2 legacy $H \rightarrow \tau \tau$ results from ATLAS.
- So far the data are in good agreement with the SM predictions but our understanding of the Higgs sector is rapidly improving.
- Additionally to measuring the coupling of the Higgs boson to τ -leptons the $H \rightarrow \tau \tau$ channel is seen to be a powerful way of exploring Higgs boson production.
- The Run 2 data is still a rich source for learning more about the Higgs boson as the legacy results are released.
- With our increasingly precise and powerful experimental tools/analysis techniques and increasing dataset we can look forward to probing the Higgs sector further in the coming years with Run 3 data.

