

STXS and differential Higgs boson cross section measurements at CMS

Istituto Nazionale di Fisica Nucleare

Benedetta Camaiani

Università degli Studi di Firenze (Italy)

On behalf of the CMS Collaboration

Introduction

- The **Higgs boson discovery** has marked the **LHC Run 1**
- LHC Run 2 and 3 are the eras of **precision** measurements of the Higgs boson
- A wide variety of final state has been explored
 - Each channel probes a different phase space and brings complementary information
- All main production modes have been measured
 - Significance of 5σ or larger

"A portrait of the Higgs boson by the CMS experiment ten years after the discovery", Nature 607, 60-68(2022)

Fiducial and differential measurements

- Fiducial differential measurements play a key role
 - The most model-independent way to measure Higgs boson production cross section
 - Sensitive to BSM effects
- Differential: the cross section is measured in bins of some observables $(p_T^H, #jets, ...)$
 - Provides more information than inclusive measurements
 - Fiducial: the extrapolation of the result is limited to a restricted phase space defined close as possible to the experimental selection
 - Minimizes the theoretical assumption for extrapolation to full phase space
 - Easy comparison with different theories

STXS measurements

- *Simplified Template Cross Sections* (STXS) framework
 - Complementary to differential measurements

- The cross section is measured in **pre-defined template bins per production mode**
 - Reduces theoretical uncertainties
 - Enhances sensitivity to possible deviations from the SM
- No fiducial phase space defined $(|y_H| < 2.5)$
 - Larger extrapolation uncertainties but possibility to combine different decay modes

Some recent highlights from CMS

Decay channel	Oata set	Results	New
H→WW	Full Run 2	<u>Eur. Phys. J. C 83 (2023) 667</u>	CHEP2024
Η→ττ	Full Run 2	CMS-HIG-21-017 (sub. in PLB)	
Η→γγ	Full Run 2 Run 3 (2022)	JHEP 07 (2023) 091 CMS-PAS-HIG-23-014	avered
H→ZZ	Full Run 2 Run 3 (2022)	<u>JHEP 08 (2023) 040</u> CMS-PAS-HIG-24-013	in this w
H→bb	Full Run 2 Full Run 2 Full Run 2	(STXS VH(bb)) <u>Phys. Rev. D 109 (2024) 092011</u> (Boosted Hbb) <u>CMS-PAS-HIG-21-020</u> (sub. in JHEP) (ttH(bb)) <u>CMS-PAS-HIG-19-011</u>	
H→cc	Full Run 2	<u>Phys. Rev. Lett. 131 (2023) 061801</u>	
Combination & Interpretation		Full Run 2 in process	

Boosted $H \rightarrow \tau \tau$

Overview

- Full Run 2 *fiducial* measurement targeting the production of a **boosted Higgs boson** $p_T^{H} > 250 \text{ GeV}$
 - First $H \rightarrow \tau \tau$ measurement in a boosted regime
 - Test BSM effects to which inclusive measurements could be insensitive, especially *Higgs boson couplings with massive particle*
- τ leptons are produced spatially closed with their decay products overlapping
 - Dedicated algorithm is developed to reconstruct the boosted τ leptons
- Four final states targeted: $\mu \tau_{h'} e \tau_{h'} \tau_h \tau_{h'} e \mu$
- Multiclass NN used to discriminate signal from major backgrounds in each final state

Boosted H $\rightarrow \tau \tau$ Results

- Cross section of the four main production modes measured in bins of p_T^H and p_T^{j1}
- Results dominated by statistical uncertainty, especially in the highest-p_T bins
- Leading systematic uncertainty in the boosted τ_h candidate identification

Leading jet transverse momentum

 No significant deviations with respect to the SM predictions, probed large-p_T phase space extended to region beyond 600 GeV

Boosted H→bb

Overview

- Search for a boosted Higgs boson p_T^H > 450 GeV via vector boson fusion (VBF) and gluon gluon fusion (ggH) using the full Run 2 data set
 - ggH becomes less dominant, <u>direct probe to Higgs</u> <u>bosons couplings to vector bosons</u>
- Higgs boson identified by two-prong substructure and using a multivariate jet tagger [1]
- VBF-jets are used to distinguish VBF from ggH production
- Signal extraction using soft-drop mass of Higgs-jets

Comparison of the second second

Data - Bkg)/c

VBF and ggH cross sections are measured in bins of m_{ii} of VBF-jets and p_T^H respectively

m_{sp} [GeV]

- Largest uncertainty:
 - Uncertainty on the background estimation
 - Theory uncertainty on Higgs boson production
 - Uncertainty on the jet tagger selection

138 fb⁻¹ (13 TeV)

Single t

VBE

m_{sp} [GeV]

Data Bkg. unc.

QCD W(qq')

Z(qq) Z(bb)

VV VH + ttH

DDB pass, VBF category

m, > 2 TeV

STXS H→bb Overview

- Full Run 2 measurement targeting the Higgs boson production via *vector boson associated production* (VH) using **full Run 2 data**
 - 3 analysis channel based on the decay of the vector bosons
- Performed within the **STXS framework**
- Dedicated category:
 - **boosted topology**: large-radius b-jet, BDT used for signal extraction
 - **resolved topology**: 2 b-tagged jets, DNN used for signal extraction

First Run 3 results at √s=13.6 TeV 2022 data set (34.7 fb⁻¹)

Quoted both inclusive and differential cross sections

$H \rightarrow ZZ \rightarrow 4\ell \& H \rightarrow \gamma\gamma$ Overview

- *Fiducial* measurements of the Higgs boson production cross section using 2022 data (34.7 fb⁻¹) at $\sqrt{s} = 13.6$ TeV
- Low BRs but clean final state topology

More details on the analysis strategy in **Jan Lukas' talk**

150

100

CMS Preliminary

GeV 08 GeV

0.5 70

34.7 fb⁻¹ (13.6 TeV) **CMS** Preliminary 34.7 fb⁻¹ (13.6 TeV) S/(S+B) Weighted Events / GeV $-H \rightarrow \gamma\gamma$, m = 125.38 GeV Data All Categories S/(S+B) weighted H(125) Data \blacksquare qq \rightarrow ZZ $qq \rightarrow ZZ$ - S+B fit Z+X ----- B component ±1σ $\pm 2 \sigma$ B component subtracted 250 300 200 350 m_{4l} [GeV] m_{yy} (GeV)

 Differential measurements as a function of p_T^H and |y^H|

 Differential results are consistent with the SM prediction and dominated by statistical uncertainty

Higgs boson transverse momentum

Higgs boson rapidity

- Differential results as a function of p_T^{H} , $|y^H|$ and N_{iets} agree with the SM predictions
- Systematics dominated by photon scale/resolution

Conclusions

- The LHC Run 2 made it possible to conduct an extensive set of fiducial and differential Higgs boson cross section measurements
- Recents results from the CMS Collaboration have been presented, including the very first measurements with Run 3 data
- So far, all measurements are consistent within the uncertainties with the Standard Model expectations
- Precision in measurements is still largely statistically limited
- The LHC Run 3 will allow even more precise measurements with more granular binning

Thanks for your attention

Backup

H→ZZ @ 13.6 TeV

Overview

- *Fiducial* measurement in the **4 leptons final state** (H \rightarrow ZZ \rightarrow 4l, l=e,µ) using **2022 data** (34.7 fb⁻¹) at $\sqrt{s} = 13.6 \text{ TeV}$
 - Low BR but clear signature, large S/B and final state kinematics fully reconstructed
- Main backgrounds are non-resonant ZZ production and Z+X
- Signal extraction through a fit to the m_{41} distribution, unfolding embedded in the likelihood fit
- Inclusive results in agreement with the SM expectation

$H \rightarrow \gamma \gamma @ 13.6 \text{ TeV}$ Overview

- *Fiducial* differential Higgs boson cross section measurement using 2022 data (34.7 fb⁻¹) at $\sqrt{s} = 13.6$ TeV
 - Small BR but excellent energy resolution, narrow peak over a smoothly falling background
- Clean final state:
 - Signal is reconstructed by two energetic photons
 - Main backgrounds are QCD $\gamma\gamma$ production and γ +jets
- Signal extraction through a fit to the diphoton invariant mass spectrum $(\mathbf{m}_{\gamma\gamma})$
- Unfolding embedded in the likelihood fit
- Inclusive cross section statistically limited and systematic uncertainty dominated by per-photon energy resolution

Boosted H $\rightarrow \tau \tau$ Multiclass NN

Multiclass NN that separates the signal from DY and mis-ID backgrounds

Observed and expected NN distributions in the signal-enriched region, after combining all four $p_T^{\ H}$ bins

CMS,

CMS

Boosted H \rightarrow **bb** ggF category

138 fb⁻¹ (13 TeV)

40

60

nts / 7 GeV

Ň

(Data - Bkg)/σ_{Dat}

600

400

300 +

200

100

CMS

DDB pass, ggF category 500 550 < p_ < 600 GeV

100 120

80

Boosted H→bb

Measured signal strength

H→bb Strategy

- Stage 1.2 scheme with some modifications:
 - Merge *qqZH+ggZH* bins
 - Merge *WH* 150–250 (0*jet*+>0*jets*) bins
 - Bin with normalisation fixed to SM expectation

Reco-level categories in p_T (V) and #jets

0-lepton							
$p_T(V)$	(0,250))	(250),400)		[400,∞)	
# of additional jets	0 ≥	<u>≥</u> 1					
1 - lepton							
$p_T(V)$	(0,250))	(250),400)	I	[400,∞)	
		2 – <i>l</i>	epton				
$p_T(V)$	(75,150)	(150),250)	(250,4	00)	[400,∞)	
# of additional jets		0	≥1				

• For each category, one SR and 3 CRs enriched in the main background processes are defined

H→bb Strategy

q			Z V V V	0-leptor (Znn)	,
q/q'		Б	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	1-leptor (Wln)	,
				2-leptor (ZII) ℓ = e,	, ,
	SR	tī CR	V+LF CR		V+HF
n, resolved	DNN	$p_{\rm T}({ m V})$	$p_{\rm T}({ m V})$		HFD
n, boosted	BDT	DeepAK8bbVsLight	DeepAK8bbVsLi	ght	DeepAK8b
1 1	TON IN I	(17)	(17)		LIDD

	SR	t ī CR	V+LF CR	V+HF CR
0-lepton, resolved	DNN	$p_{\rm T}({ m V})$	$p_{\rm T}({ m V})$	HFDNN
0-lepton, boosted	BDT	DeepAK8bbVsLight	DeepAK8bbVsLight	DeepAK8bbVsLight
1-lepton, resolved	DNN	$p_{\rm T}({ m V})$	$p_{\rm T}({ m V})$	HFDNN
1-lepton, boosted	BDT	DeepAK8bbVsLight	DeepAK8bbVsLight	DeepAK8bbVsLight
2-lepton, resolved	DNN	$p_{\rm T}({ m V})$	$p_{\rm T}({ m V})$	DeepCSV scores
2-lepton, boosted	BDT	DeepAK8bbVsLight	DeepAK8bbVsLight	DeepAK8bbVsLight

H→bb Resolved topology

Variable	SR	Z + b jets	Z + light jets	tī
Common selection:				
$min(pfMET, H_T^{miss})$	> 100	-//-	-//-	-//-
$p_{\rm T}^{\rm miss}$	> 170	-//-	-//-	-//-
$p_{\mathrm{T}}^{j_1}$	> 60	-//-	-//-	-//-
p_{T}^{j2}	> 35	-//-	-//-	-//-
$p_{\rm T}(jj)$	> 120	-//-	-//-	-//-
$\Delta \phi(Z,H)$	> 2.0	-//-	-//-	-//-
$\Delta \phi(\text{pfMET,J})$	> 0.5	> 0.5	> 0.5	> 0.5
Different between SR and CRs:				
Naj	≤ 1	≤ 1	≤ 1	≥ 2
M(jj)	∈[90-150]	∉[90-150]	-	-
btag _{max}	> medium	> medium	< medium	> medium
btag _{min}	>loose	>loose	<loose< td=""><td>>loose</td></loose<>	>loose
$\Delta \phi$ (pfMET,trkMET)	< 0.5	< 0.5	< 0.5	-
$\min \Delta \phi(\text{pfMET},J)$	-	-	-	$<\pi/2$

Variable	SR	W + b jets	W + light jets	tī
Common selection:				
$p_{\rm T}(jj)$	> 100	-//-	-//-	-//-
$p_{\mathrm{T}}(V)$	> 150	-//-	-//-	-//-
N _{lep}	< 1	-//-	-//-	-//-
p_{T}^{j1}	> 25	-//-	-//-	-//-
p_T^{j2}	> 25	-//-	-//-	-//-
$\Delta \phi(\text{lep, pfMET})$	< 2	-//-	-//-	-//-
Difference between SR and CRs:				
btag _{max}	>medium	>medium	[loose-medium]	>tight
btagmin	>loose	-	-	-
M(jj)	[90,150]	[150,250] and <90	<250	< 250
Nai	< 2	< 2	-	>1
$\sigma(\text{pfMET})$	-	> 2	> 2	-
$\Delta \phi(H,V)$	< 2.5	-	-	-

Variable	SR	Z + b jets	Z + light jets	tī
btag _{max}	>medium	>medium	<loose< td=""><td>>tight</td></loose<>	>tight
btagmin	>loose	>loose	<loose< td=""><td>>loose</td></loose<>	>loose
M(V)	[75,105]	[85,97]	[75,105]	[10,75] and <120
M(jj)	[90,150]	∉[90,150]	[90,150]	
\vec{p}_{T}^{miss}	-	<60	-	-
$\Delta \phi(H,V)$	-	> 2.5	> 2.5	-

H→bb Resolved topology

Variable

Input variables of the DNN trained in resolved SRs

M(jj)	Dijet invariant mass	~	~	~	
p _T (jj)	Dijet transverse momentum	~	~	~	-
$\vec{p}_{\mathrm{T}}^{\mathrm{miss}}$	MET transverse momentum	~	~	~	
M _t (V)	Transverse mass of vector boson		1		
$p_{\rm T}({\rm V})$	Transverse momentum of vector boson		1	~	
$p_{\rm T}(\rm jj) / p_{\rm T}(\rm V)$	Ratio of momentum of vector boson and Higgs boson		~	~	
$\Delta \phi(V, H)$	Azimuthal angle between vector boson and dijet directions	~	1	1	
btag _{max}	Working point b-tagging score of leading jet	~	~	~	
btag _{min}	Working point b-tagging score of sub-leading jet	~	1	~	
$\Delta \eta(jj)$	Pseudorapidity difference between leading and sub-leading jet	~	1	~	
$\Delta \phi(jj)$	Azimuthal angle between leading and sub-leading jet	~	1		
$p_T^{max}(j_1,j_2)$	Maximum transverse momentum of jet between leading and sub-leading jet	~	~		
$p_T(j_2)$	Transverse momentum of the sub-leading jet	~	1		
SA5	Number of soft-track jets with momentum greater than 5 GeV	~	1	1	
N _{aj}	Number of additional jets	~	~		
btag _{max} (add)	Maximum btagging discriminant score among additional jets	~			
$p_T^{max}(add)$	Maximum transverse momentum among additional jets	~			
$\Delta \phi$ (jet, pfMET)	Azimuthal angle between additional jet and MET	~			
$\Delta \phi(\text{lep, pfMET}) = M_t$	Azimuthal angle between lepton and MET Reconstructed top quark mass		1		
$p_T(j_1)$	Transverse momentum of leading jet			~	
$p_T(j_2)$	Transverse momentum of sub-leading jet			~	
M(V)	Reconstructed vector boson mass			~	
$\Delta R(V, H)$	Angular separation between vector boson and Higgs boson			~	
$\Delta R(V, H)$ (kin)	Angular separation between vector boson (reconstructed after kinematic fit) and Higgs boson			1	
$\sigma(\mathbf{m}(\mathbf{jj}))$	Resolution of dijet invariant mass			1	
N _{rec}	Number of recoil jets			1	

Description

Most discriminating variables

0-lepton 1-lepton 2-lepton

H→bb Boosted topology

$(\neg$	0-lepton				
	Variable	SR	Z + b jets	Z + light jets	tī
-	DeepAK8 (bbVsLight)	> 0.8	> 0.8	< 0.8	> 0.8
	M(jj)	∈[90,150]	∉[90,150]	> 50	> 50
	N _{al}	= 0	= 0	= 0	> 0
	N _{aj}	= 0	= 0	= 0	>1
	1-lepton				-
	Variable	SR	W + b jets	W + light jets	tī
-	DeepAK8 (bbVsLight)	> 0.8	> 0.8	< 0.8	> 0.8
	M(jj)	∈[90,150]	∉[90,150]	> 50	> 50
	N _{al}	= 0	= 0	= 0	> 0
	N _{aj}	= 0	= 0	= 0	>1
	2-lepton				
	Variable	SR	Z + b jets	Z + light jets	tī
	DeepAK8 (bbVsLight)	> 0.8	> 0.8	< 0.8	> 0.8
	M(jj)	∈[90,150]	∉[90,150]	> 50	> 50
	M(V)	∈[75,105]	∈[75,105]	∈[75,105]	∉[90,150]

- $H \rightarrow ZZ$ Overview
- **Full Run 2** *fiducial* measurement considering the 4 leptons final state ($H \rightarrow ZZ \rightarrow 4l$)

 σ_{fid} (fb)

Ratio to NNLOPS

0.8

0.7

- Clean final state, excellent mass resolution and large S/B Ο
- Extend the measurement with respect to the previous Run 2 analysis
- Set of **31 observables**
- Production and decay variables, jet 0 related variable,... For the O

Matrix element (ME) discriminant

first time! sensitive to anomalous couplings in the HVV vertex

- Double differential results Ο
- Signal extraction through a fit to the m_{41} distribution
 - Inclusive results in agreement with the SM expectation and measured with overall precision of 10%

Higgs boson kinematics

ME discriminant

• Differential results are **consistent with the SM prediction** and **dominated by statistical uncertainty**