Higgs boson cross section and coupling measurements at CMS

III. Physikalisches Institut A, RWTH Aachen University

ICHEP 2024, 18th July 2024

Research Training Group Physics of the Heaviest Particles at the LHC

Jan Lukas Späh on behalf of the CMS Collaboration

VBS WW candidate

 $H \rightarrow \gamma \gamma$ candidate

More information on differential results in Benedetta's talk at 10:45am

J. L. Späh (IIIA, RWTH)

Higgs boson cross sections and couplings at CMS

Overview

WH in vector-boson scattering

• Probe sign of $\lambda_{WZ} = \kappa_W / \kappa_Z$ with <u>interference in WH VBS</u>

- Deviation of couplings from SM prediction leads to significant Lorentz boost of W and Higgs bosons
- Observed (expected) upper limit of 14.3 (9.0) times SM
- All opposite sign scenarios with κ_W and κ_Z compatible with current measurements excluded with CL > 99.99%

WWH in vector-boson scattering

Measurement of ttH(bb)

- ttH offers direct access to coupling of top and Higgs
- Challenging measurement in particular due to irreducible background from ttbb
- Deficit of events is observed \rightarrow Anticorrelation with ttB
- Constraints on $\kappa_{\rm f}$, $\tilde{\kappa}_{\rm f}$, $\kappa_{\rm V}$
- Limit of 14.6 times SM on tH

CMS			138 fb ⁻¹ (13 TeV)				
		I	μ	tot	stat	syst	
FH	•••••	-	0.84	+0.49 -0.46	+0.24 -0.24	+0.42 -0.39	
SL			0.46	+0.33 -0.33	+0.21 -0.21	+0.25 -0.26	
DL	+■+		-0.23	+0.41 -0.42	+0.31 -0.31	+0.26 -0.29	
2016	H		0.49	+0.42 -0.40	+0.25 -0.25	+0.33 -0.32	
2017	H		0.32	+0.38 -0.37	+0.24 -0.24	+0.29 -0.28	
2018	H		0.23	+0.34 -0.34	+0.21 -0.21	+0.27 -0.27	
Combined	H		0.33	+0.26 -0.26	+0.17 -0.16	+0.20 -0.21	
	0		5		10		
					$\hat{\mu} = \hat{\sigma} / \sigma_{SM}$		

Higgs boson cross sections and couplings at CMS

- Decay channels $H \rightarrow \gamma \gamma$ and $H \rightarrow ZZ^* \rightarrow 4\ell$ well suited for inclusive and differential measurements \rightarrow Fiducial: reduces extrapolation uncertainties → Analysis strategy <u>reduces model-dependence</u>
- Precision in $\sigma_{\rm fid}$: 8 % in $\gamma\gamma$, 9.5 % in 4 ℓ
- Comprehensive set of differential measurements → Allows robust coupling measurements $\rightarrow p_{\rm T}^{\rm H}$ distribution used to constrain $\kappa_{\rm h}$ and $\kappa_{\rm c}$

$H \rightarrow \gamma\gamma$ and $H \rightarrow ZZ^* \rightarrow 4\ell$

JHEP 08 (2023) 040

- $H \rightarrow 4\ell$ well-s<u>uited</u> for measurement with 2022 dataset: <u>Clean signal</u> → Unbinned maximum-likelihood fit
- Overall, same strategy as in Run 2 measurement
- $\sigma_{\text{fid}} = 2.94^{+0.53}_{-0.49} \text{ (stat.)}^{+0.29}_{-0.22} \text{ (syst.) fb}$ → Most relevant systematic: Electron efficiency
- Excellent validation of <u>muon and electron</u> performance of CMS in Run 3

$H \rightarrow 4\ell$ at 13.6 TeV: Results

$H \rightarrow 4\ell$ at 13.6 TeV: Performance

- Trigger efficiency larger than 99% for events that satisfy selection
- $\rightarrow \varepsilon_{\text{signal}} \approx 80\%$, $\varepsilon_{\text{bkg}} \approx 4\%$ (barrel)
- Also use "tracker muons": inner tracks matched to muon detector segments
- Measurements per lepton category consistent with each other
- Systematic uncertainty smallest for 4μ final state (benefit from J/ψ)

• Dedicated <u>BDT for electron identification</u>. For 5 GeV $< p_T < 10$ GeV:

$H \rightarrow \gamma \gamma$ at 13.6 TeV: Overview

CMS-PAS-HIG-23-014

- Overall, same strategy as in Run 2 → <u>Suppression of non-prompt photons</u> with BDT \rightarrow In contrast to H $\rightarrow 4\ell$, S/B is lower → However, excellent <u>data-driven</u> background estimation under the peak
- Categorisation based on mass resolution
- New columnar analysis framework, processing lightweight datasets

13.6 TeV Best resolution 130 135 140 125 $m_{\gamma\gamma}$ (GeV)

$H \rightarrow \gamma \gamma$ at 13.6 TeV: Corrections to simulation

J. L. Späh (IIIA, RWTH)

Disagreement in input variables for photon ID BDT propagates to output score

 Corrected with <u>single normalising flow</u> (2403.18582) conditioned on kinematics \rightarrow Trained using $Z \rightarrow ee$ probes, simplified compared to Run 2 BDT approach

Excellent agreement after correction in ID score and also mass resolution

$H \rightarrow \gamma \gamma$ at 13.6 TeV: Inclusive cross section

- \rightarrow Improved perturbative convergence in phase space (2106.08329)
- $\sigma_{\text{fid}} = 78 \pm 11 \text{ (stat.)}_{-5}^{+6} \text{ (syst.) fb} = 78^{+13}_{-12} \text{ fb}$
- <u>Systematics</u> dominated by <u>photon scale/resolution</u>

Systematic uncertainty

Photon energy scale and resolution group Category migration from energy resolution Integrated luminosity Photon preselection efficiency Non-linearity Photon identification efficiency Pileup reweighting

• Apply fiducial requirement on geometric mean: $\sqrt{p_T^{\gamma_1} p_T^{\gamma_2}/m_{\gamma\gamma}} > 1/3$

Magnitude +5.8%/-4.9%+3.5%/-3.9% $\pm 1.4\%$ $\pm 1.4\%$ +0.8%/-1.6% $\pm 1.0\%$ $\pm 0.8\%$

Summary

Wealth of results provided with <u>Run 2</u> dataset \rightarrow Showcased two VBS searches and ttH measurement

Presented two new measurements at 13.6 TeV \rightarrow Inclusive/differential measurements in H $\rightarrow \gamma\gamma$ and H $\rightarrow 4\ell$ \rightarrow Using ~ 35 fb⁻¹, measurements statistically limited

J. L. Späh (IIIA, RWTH)

Higgs boson cross sections and couplings at CMS

$H \rightarrow 4\ell$ at 13.6 TeV: Results

• Measured cross section in coarse bins of $p_{\rm T}^{\rm H}$ and $|y_{\rm H}|$

J. L. Späh (IIIA, RWTH)

Differential measurements in good agreement with SM predictions

$H \rightarrow \gamma \gamma$ at 13.6 TeV: Differential cross sections

- Differential cross sections measured for $p_{\rm T}^{\rm H}$, $|y^{\rm H}|$, and $N_{\rm jets}$
- Statistically limited, will <u>benefit from full Run 3 dataset</u> → More granular binning

J. L. Späh (IIIA, RWTH)

Agreement within uncertainties with the MadGraph+NNLOPS prediction

Higgs boson cross sections and couplings at CMS

$H \rightarrow \gamma \gamma$ at 13.6 TeV: Photon ID score in simulation

$H \rightarrow \gamma \gamma$ at 13.6 TeV: σ_E , H/E in $Z \rightarrow ee$

$H \rightarrow \gamma \gamma$ at 13.6 TeV: Photon ID score in $Z \rightarrow ee$

$H \rightarrow \gamma \gamma$ at 13.6 TeV: Mass resolution in $Z \rightarrow ee$

Points in ratio panel offset for visibility only

$H \rightarrow \gamma \gamma$ at 13.6 TeV: Photon ID score in $Z \rightarrow \mu \mu \gamma$

Points in ratio panel offset for visibility only

