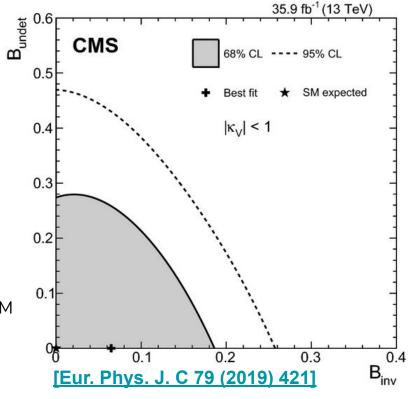

Measurements of the Higgs boson mass and width at CMS

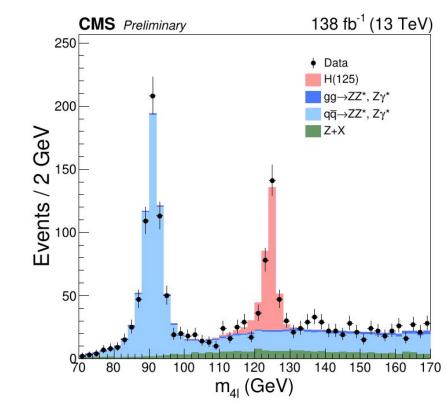
B. Marzocchi¹, on behalf of the CMS Collaboration

1: University of Minnesota (UMN), USA

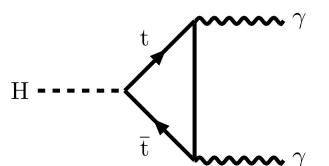
- Higgs boson mass (m_H) not predicted by the theory
- All properties of Higgs boson (couplings, branching ratios...) depend on m_H →Motivates precision measurements of m_H
- Mass and width measurements are carried in high resolution channels


∘ Н→үү

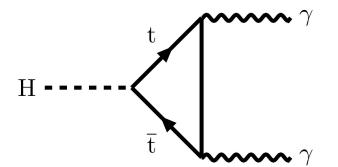
Introduction: Higgs boson mass and width


- m_H (and m_t) determine behavior of electroweak vacuum
 →Cosmological implications [1]
- Possibility of Higgs decay to BSM particles from $\Gamma_{\!_{\!H}}$ measurement:
 - Br_{BSM} ≲ 30% [2]
 - Given the small $\Gamma_{\rm H}$ ~ 4 MeV, even small couplings with BSM particles,~O(10⁻²), yield Br(h→BSM)=10%
- Precise knowledge of m_H leads to overconstrained checks of SM self-consistency:

$$m_{\rm W} = \left(\frac{\pi\alpha}{G_{\rm F}\sqrt{2}}\right)^{\frac{1}{2}} \frac{1}{\sin\theta_{\rm W}\sqrt{1 - f(m_{\rm t},\log(m_{\rm H}))}}$$


B. Marzocchi

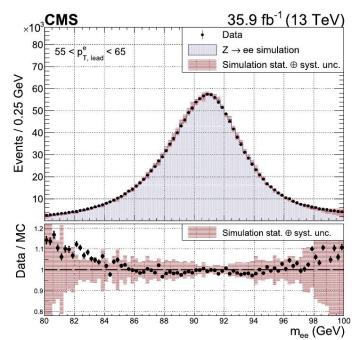
- Higgs decays to 4 ℓ and $\gamma\gamma$ are best suited for mass measurements:
 - Very clean final states, with good S/(S+B)
- Properties of decay products can be known very precisely
- Natural width $\Gamma_{\rm H}$ predicted to be very small (~4 MeV) for m_H = 125 GeV
 - Much below experimental resolution
 - $\rightarrow Possible$ to measure $\Gamma_{\!_{H}}$ using off-shell decays



m_{H} in $H \rightarrow \gamma \gamma$: <u>Phys. Lett. B, 805 (2020)</u>

- Small BR (~0.23%) but clean final state
- Use data collected in 2016 (36 fb⁻¹)
- Previous CMS analysis [3]
- Measurement refined with **better detector calibration and understanding of systematics:**
 - Improved description of data-MC nonlinear discrepancies in energy scale
 - Developed a method to evaluate systematic due to radiation damage in ECAL
 - \rightarrow Usable to reduce systematic uncertainty for the final full Run2 measurement

- Small BR (~0.23%) but clean final state
- Use data collected in 2016 (36 fb⁻¹)
- Previous CMS analysis [3]
- Measurement refined with **better detector calibration and understanding of systematics:**
 - Improved description of data-MC nonlinear discrepancies in energy scale
 - Developed a method to evaluate systematic due to radiation damage in ECAL
 - \rightarrow Usable to reduce systematic uncertainty for the final full Run2 measurement
- Strategy:
 - Preselection kinematic cuts on γγ pair
 - VBF BDT to separates VBF from ggH , Diphoton-BDT to select signal-like with high resolution diphoton pairs: first separate events in 3 VBF categories, then in 4 ggH categories using diphoton-BDT
 - Sig-bkg models:
 - Signal: sum of up to 4 gaussians
 - **Background:** using sideband data with discrete profiling method


- Precise calibration of ECAL response to photons is fundamental
- Done in steps:

1. Compute E_v summing calibrated and corrected energies from ECAL deposits

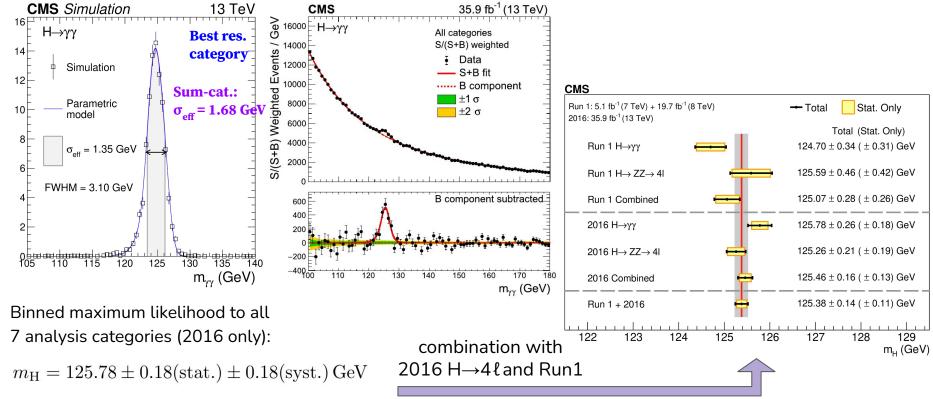
- 2. Multivariate regression [4] applied on top of the energy correcting for:
 - \rightarrow Incomplete containment of EM showers
 - \rightarrow Energy losses from conversions upstream of ECAL,

 \rightarrow Pileup effects

- 3. Correct for residual differences between data and MC in energy scale and resolution, using $Z \rightarrow ee$ electrons reconstructed as photons:
 - →Correct for long-term shifts of the energy scale (per LHC-fill) →Derive corrections for energy scale and resolution in bins of $|\eta|$, R9* →Derive corrections for energy scale in bins of $|\eta|$ and p_T
 - to account for residual non-linearities

* Low/high R9: converted/unconverted photon

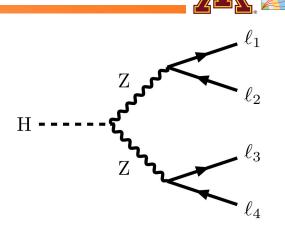
B. Marzocchi



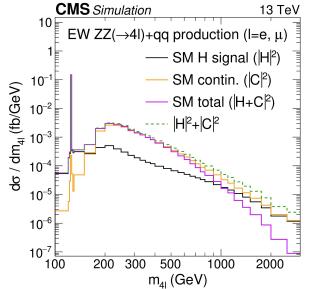
$\mathbf{m}_{\mathbf{H}}$ in $\mathbf{H} \rightarrow \mathbf{\gamma} \mathbf{\gamma}$: Results

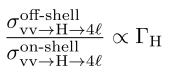
a.u

B. Marzocchi

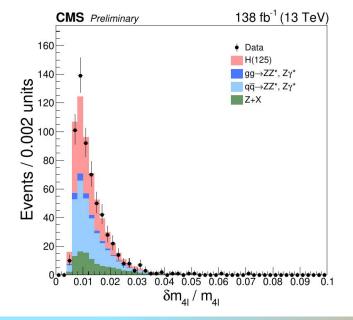


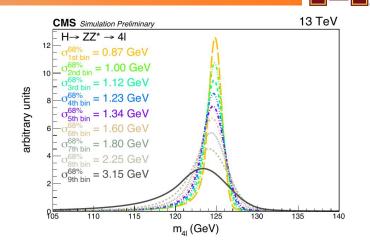
 \rightarrow Measurement precision at per-mille level


m_{H} and Γ_{H} in $H \rightarrow 4\ell$: <u>CMS-HIG-21-019</u>


- Very small BR (1.24×10^{-4}) but very clean final state
- Use data collected in Run2 (138 fb⁻¹)
- Previous CMS analysis [5]
- Measurement of m_H refined through better detector calibration, analysis strategy and understanding of systematics
- Measure the Higgs boson natural width **F**_H using on- and off-shell events

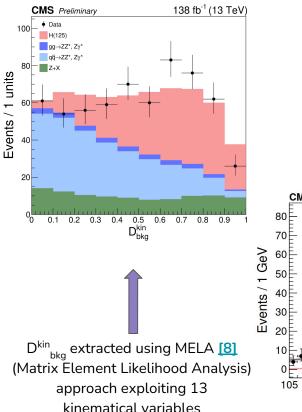
m_{H} and Γ_{H} in H \rightarrow 4 ℓ : <u>CMS-HIG-21-019</u>


- Very small BR (1.24 x 10⁻⁴) but very clean final state
- Use data collected in Run2 (138 fb⁻¹)
- Previous CMS analysis [5]
- Measurement of m_H refined through better detector calibration, analysis strategy and understanding of systematics
- Measure the Higgs boson natural width F_H using off-shell events: previous measurement by CMS [6]
 - Relying on assumptions
 - Knowledge of coupling ratios between on- and off-shell production
 - **ggH loop** production is **dominated by top and has no BSM** contributions
 - Off-shell region characterized by sizeable interference between H boson signal and continuum background: PDF taking into account for interference

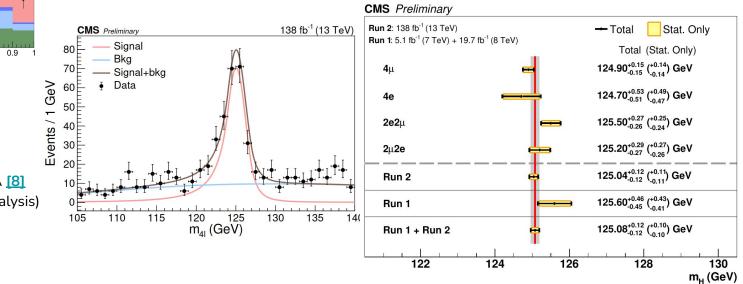


m_{H} and Γ_{H} in $H \rightarrow 4\ell$: improvements in m_{H} measurement

- Vertex-beamspot (VXBS) constraint: 4ℓ tracks constrained to common vertex compatible with beam spot: 3-8% mass resolution improvement
- Constraint on intermediate on-shell Z with a kinematical-fit: p_T of dilepton pair should give Z true lineshape



- Select 4 prompt isolated leptons and split events in 9 categories based on mass uncertainty (δm_{4l}/m_{4l}): isolate events with high mass resolution from the others (≈ 10% mass resolution improvement)
- Sig.-bkg. models:
 - **Signal:** DSCB + Landau (+ Breit-Wigner when measuring Γ_{μ})
 - Background:
 - Irreducible: from MC, Bernstein pol. degree 3
 - Reducible: from control region in data (fake-rate method), Landau

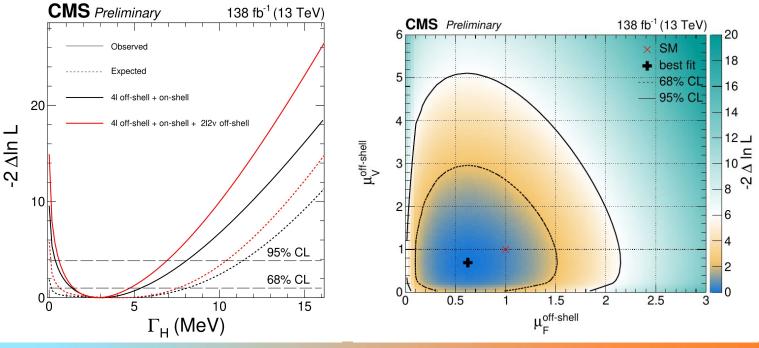

B. Marzocchi

m_{H} and Γ_{H} in $H \rightarrow 4\ell$: m_{H} results

- Maximum likelihood fit to m_{4l} and kinematic discriminant D_{bkg}^{kin} (template) combining all $\delta m_{4l}/m_{4l}$ categories: $m_{\rm H} = 125.04 \pm 0.11 ({\rm stat.}) \pm 0.05 ({\rm syst.}) \,{\rm GeV}$
 - Results are combined with Run1 data [7] →Most precise single-channel measurement to date: precision < per-mille level

B. Marzocchi

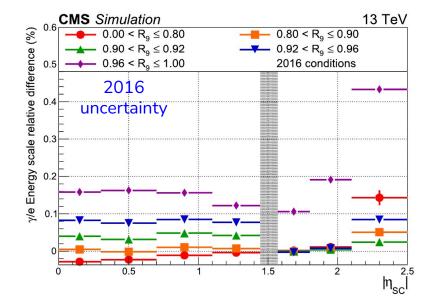
$\mathbf{m}_{\mathbf{H}}$ and $\mathbf{\Gamma}_{\mathbf{H}}$ in $\mathbf{H} \rightarrow 4\ell: \Gamma_{\mathbf{H}}$ off-shell results


• Strategy:

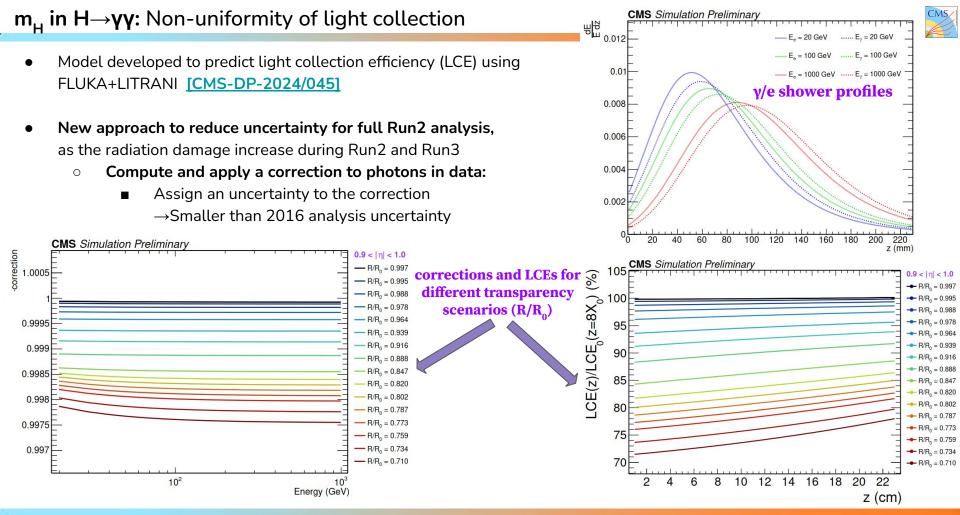
- Select region m₄₁ > 220 GeV
- **3 exclusive categories:** VBF tagged, VH tagged, untagged
- **Fit 3 observables (templates)**: m₄₁+2 kinematic discriminants
- \circ Model with 4 parameters of interest: $m_{H}^{},\,\Gamma_{H}^{},\,\mu_{F}^{},\,\mu_{V}^{}$

 $_{\circ}$ Extracted: $\Gamma_{
m H}=2.9^{+2.3}_{-1.7}~{
m MeV}$

- On-shell: $\Gamma_{\rm H}$ < 60 MeV (68% CL)
- \circ Off-shell $\mu_{F}^{''}, \mu_{V}$ in agreement with SM prediction


B. Marzocchi

Source	Contribution (GeV)
Electron energy scale and resolution corrections	0.10
Residual $p_{\rm T}$ dependence of the photon energy scale	0.11
Modelling of the material budget	0.03
Nonuniformity of the light collection	0.11
Total systematic uncertainty	0.18
Statistical uncertainty	0.18
Total uncertainty	0.26


- Non-uniformity of light collections due to radiation damage:
 - Scale corrections derived in Z(ee) and applied to photons
 - Photons penetrate $\approx 1X_0$ deeper than electrons in crystals
 - Radiation damage not simulated:
 - Impact of γ/e shower profile difference cannot be corrected by the regression
- Scale difference between electrons and photons computed
 → difference assigned as systematic uncertainty

Dominant systematics:

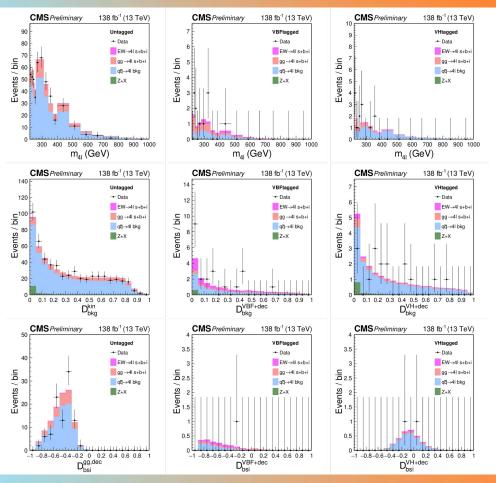
- \rightarrow Residual energy scale
- ${\rightarrow} \text{Non-uniformity of light collection}$

B. Marzocchi

B. Marzocchi

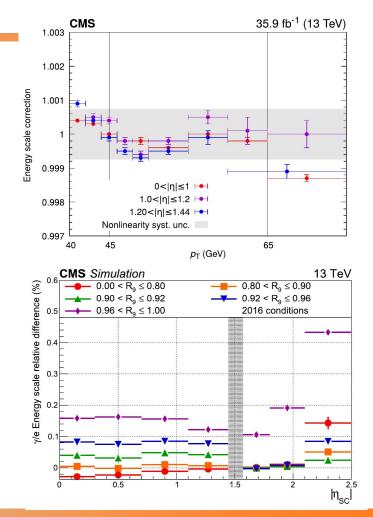
Conclusions

- The CMS Collaboration measured the Higgs boson mass and natural width using the standard high-mass-resolution channels: $\gamma\gamma$ and 4ℓ
- **Per-mille level of precision on m_H in H** \rightarrow **yy** decay channel, using 2016 data
- Most precise single-channel measurement on m_H in H→4ℓ decay channel, combining Run1+Run2 measurements
 →Very precise Γ_H measurement using off-shell events in H→4ℓ decay channel
- Efforts are ongoing to reduce the uncertainties on full Run2 $H \rightarrow \gamma \gamma$:
 - Uncertainties on the energy scale thanks to refined calibration and optimized residual corrections
 - Uncertainty on the non-uniformity of light collection thanks to the new approach



BACKUP

m_H and Γ_{H} in H \rightarrow 4l: Γ_{H} off-shell observables


B. Marzocchi

ICHEP-2024: Higgs mass and width

CMS

$m_{_{\!H}}$ in $H{\rightarrow}\gamma\gamma$: Systematic uncertainties

- E_{γ} scale and resolution: vary R9 distribution and selection criteria of Z(ee) electrons
- Residual p_T dependance of scale corrections
 - Corrections for Z(ee) electrons ($< p_T > \approx 45$ GeV) used for H($\gamma\gamma$) photons ($< p_T > \approx 60$ GeV)
 - Apply residual corrections a second time over corrected data and re-obtain corrective factors; deviations from unity taken as systematic
- Non-uniformity of light collections due to radiation damage
 - Scale corrections derived in Z(ee), applied to photons
 - Photons penetrate $\approx 1 X_0$ more than electrons in ECAL crystals
 - Developed and validated dedicated light collection efficiency model [1, 2]

