

Search for additional Higgs bosons in the CMS experiment

Geliang Liu on behalf of CMS Collaboration

Jul. 20th, 2024 ICHEP2024

Theoretical motivation

Experimental exploration in the CMS experiment

Neutral scalar Higgs boson (X)

Decay to vector bosons (V)

- ➤ X→VV→4q/b: <u>CMS-B2G-20-009</u>
- ≻ Light X→ γγ: <u>CMS-HIG-20-002</u>
- ✤ Heavy X->үү: <u>СМS-EXO-22-024</u>
- X→WW→IIvv: <u>CMS-PAS-HIG-20-016</u>

✓ X→ZZ→4I: <u>CMS-PAS-HIG-24-002</u>

Decay to Higgs bosons (H)

- ➤ X→HH→bbtt: <u>CMS-HIG-20-014</u>
- ➤ X→HH→4W/T: <u>CMS-HIG-21-002</u>
- ➤ X→HH→4b: <u>CMS-B2G-21-003</u>
- ➤ X→HH/YH→bbyy: <u>CMS-HIG-21-011</u>
- ➤ X→HH→bbWW: <u>CMS-HIG-21-005</u>
- ✓ X→HH/YH→үүтт: <u>CMS-PAS-HIG-22-</u> 012

Other decays

- X→TT: <u>CMS-HIG-21-001</u>
- ✓ X/A→bb: <u>CMS-PAS-SUS-24-001</u>

Neutral pseudoscalar Higgs boson (A/a)

Decay to ZH

- $A \rightarrow ZH \rightarrow IItt: CMS-PAS-B2G-23-006$
- ✓ A→ZH→IITT: <u>CMS-PAS-HIG-22-004</u>

Decay from the Higgs boson(H)

- > $H \rightarrow aa \rightarrow 4\gamma$: <u>CMS-HIG-21-016</u>
- > $H \rightarrow Za \rightarrow 2I2\gamma$: <u>CMS-HIG-22-003</u>
- H→aa→2µ2b, 2T2b: <u>CMS-HIG-22-007</u>
- □ $H \rightarrow aa \rightarrow 4\mu$: <u>CMS-PAS-HIG-21-004</u>

All with full Run 2 dataset!

- Previous results
- Included in the <u>talk</u> of J. Babbar
- Included in the <u>talk</u> of S. Kwan
- Included in the <u>talk</u> of D. HundHausen
- ✓ Published in 2024 and included in this talk !

Charged Higgs boson (H±)

- ► H++(H+)→WW(WZ): <u>CMS-HIG-20-</u> 017
- > H±→WH(TT): <u>CMS-HIG-21-010</u>
- ♦ H±→Wγ: <u>CMS-EXO-21-017</u>

Experimental exploration in the CMS experiment

Neutral scalar Higgs boson (X)

Decay to vector bosons (V)

- ➤ X→VV→4q/b: <u>CMS-B2G-20-009</u>
- > Light X \rightarrow YY: <u>CMS-HIG-20-002</u>
- ✤ Heavy X->үү: <u>СМS-EXO-22-024</u>
- X→WW→IIvv: <u>CMS-PAS-HIG-20-016</u>

✓ $X \rightarrow ZZ \rightarrow 4I$: <u>CMS-PAS-HIG-24-002</u> Decay to Higgs bosons (H)

- > X→HH→bbtt: CMS-HIG-20-014
- > X→HH→4W/T: CMS-HIG-21-002
- X→HH→4b: <u>CMS-B2G-21-003</u>
- ➤ X→HH/YH→bbyy: <u>CMS-HIG-21-011</u>
- ➤ X→HH→bbWW: <u>CMS-HIG-21-005</u>
- ✓ X→HH/YH→YYTT: <u>CMS-PAS-HIG-22-012</u>
- Other decays
- ➤ X→TT: <u>CMS-HIG-21-001</u>

✓ X/A→bb: <u>CMS-PAS-SUS-24-001</u>

Neutral pseudoscalar Higgs boson (A/a)

Decay to ZH

 \bigcirc A \rightarrow 7H \rightarrow IItt: CMS-PAS-B2G-23-006

✓ A→ZH→IITT: <u>CMS-PAS-HIG-22-004</u>

Decay from the Higgs boson(H)

- ≻ H→aa→4γ: <u>CMS-HIG-21-016</u>
- > $H \rightarrow Za \rightarrow 2I2\gamma$: <u>CMS-HIG-22-003</u>
- H→aa→2µ2b, 2T2b: <u>CMS-HIG-22-007</u>
- □ $H \rightarrow aa \rightarrow 4\mu$: <u>CMS-PAS-HIG-21-004</u>

All with full Run 2 dataset!

- Previous results
- Included in the <u>talk</u> of J. Babbar
- Included in the <u>talk</u> of S. Kwan
- Included in the <u>talk</u> of D. HundHausen
- Published in 2024 and included in this talk !

Charged Higgs boson (H±)

- ≻ H++(H+)→WW(WZ): <u>CMS-HIG-20-</u> 017
- ► H±→WH(TT): <u>CMS-HIG-21-010</u>
- ♦ H±→Wγ: <u>CMS-EXO-21-017</u>

CMS-PAS-HIG-22-012 Search for scalar X \rightarrow HH/YH \rightarrow YYTT

X→HH/YH→yyTT: Analysis strategy

g

lee

Physics

- X→HH→yyTT: warped extra dimension (WED) theories
 - bulk radion and graviton
- > X-YH-YYTT / TTYY: NMSSM
 - 2HDM + 1 complex singlet
 - 3 scalar Higgs bosons (X, Y, H)

Event selection and categorization

- Trigger on yy
- Select 2 good photons, and ≥ 1 T candidate (e, µ, hadronic T, or an isolated track)
- > 8 channels depending on the lepton flavor
- > Parameterized Neural Network (pNN) used for event categorization: $f(\vec{x}|M_X, M_Y)$

H/Y

Η

Х

GeV

Events / 2

CMS-PAS-HIG-22-012

High mass Y (> 125 GeV)

Discriminating variable: $M_{\gamma\gamma}$

Process modelling

- Signals: double crystal ball functions (DCB) on $M_{\gamma\gamma}$
- Single Higgs boson: DCB
- Continuum backgrounds: smooth functions
- Drell-Yan (DY) background: ABCD method

Low mass Y (< 125 GeV)

138 fb⁻¹ (13 TeV) CMS 138 fb⁻¹ (13 TeV) CMS 5 ____ GeV 10^{2} $_{4.5} \models X_{525} \rightarrow Y_{115} (\rightarrow \gamma \gamma) H (\rightarrow \tau \tau)$ $X_{450} \rightarrow Y_{161} (\rightarrow \gamma \gamma) H(\rightarrow \tau \tau)$ Data B model --- B model Data Cat 0 Cat 0 Events / 6 - B + H + YH •••• B + H +H+YH10 | 68% expected 95% expected 3.5 68% expected 95% expected 3 🗄 2.5 10-2 1.5 10^{-2} 0.5 10 B component subtracted B component subtracted 350 150 200 250 300 120 m_{vv} [GeV] m_{vv} [GeV]

X→HH/YH→γγττ: Results

Results on NMSSM, $X \rightarrow YH$

Υ(TT)Η(**YY**)

$Y(\gamma\gamma)H(\tau\tau)$ low mass \checkmark $Y(\gamma\gamma)H(\tau\tau)$ high mass

and kinematics

Different trigger efficiency

CMS-PAS-HIG-24-002 Search for scalar $X \rightarrow ZZ \rightarrow 4I$

X→ZZ→4I: Analysis strategy

Physics

- > X→ZZ→4I (e / μ)
- X produced with gluon fusion (ggF) or vector boson fusion (VBF)
- Model-independent search

Event selection

- ➤ Trigger on 1, 2 or 3 leptons
- \succ Select electrons and muons
- Build Z candidates, then the ZZ candidate

Event Categorization

Two categories targeting agF and VBF based on jet kinematics and D^{VBF}_{2jet} computed from MELA

CMS-PAS-HIG-24-002

Matrix Element Likelihood Approach (MELA)

Compute discriminants based on matrix elements and kinematics
[04]+ii]

CMS

X→ZZ→4I: Analysis strategy

Parametric process modeling

- Signals: by MC, with M_{4l}^{reco} parameterized as <u>(analytic</u> lineshape × signal efficiency) \otimes mass resolution
- Irreducible backgrounds: by MC, with M^{reco} parameterized
- Reducible backgrounds: data-driven method
- Interferences: amplitudes from signal, backgrounds; phases from generators and kinematics

CMS

$X \rightarrow ZZ \rightarrow 4I$: narrow width assumption

$X \rightarrow ZZ \rightarrow 4I$: narrow width assumption

CMS Preliminary 138 fb⁻¹ (13 TeV) CMS Preliminary 138 fb⁻¹ (13 TeV) Upper limit on $\sigma(gg \rightarrow X \rightarrow ZZ)$ [pb] at 95% CL σ_{ρ} ggF, NWA VBF, NWA Median expected Median expected 68% expected 68% expected 95% expected 95% expected ATLAS, EPJ C 81, 332 (2021) ATLAS, EPJ C 81, 332 (2021) Highest significance Observed Observed J10 reached at 137.8 GeV MAnn mumar Local 3.02 σ , global 1.85 σ 510⁻² ggF production **VBF** production $\frac{1}{5}$ 10⁻³ No excess at around 650 GeV 130 3000 130 200 300 400 500 1000 2000 200 300 400 500 1000 2000 3000 M_v (GeV) M_x (GeV) ATLAS result: **CMS** *Preliminary* **CMS** Preliminary 138 fb⁻¹ (13 TeV) Eur. Phys. J. C 81 (2021) 332 138 fb⁻¹ (13 TeV) Local p-value Upper limit on $\sigma(pp \rightarrow X \rightarrow ZZ)$ [pb] at 95% CL 0 0σ f_{VBF} floating, NWA Median expected 68% expected 1σ 95% expected p-value scan Observed **2**σ 10^{-2} **VBF** fraction floating **3**σ 130 200 300 400 500 1000 2000 3000 200 300 400 500 1000 2000 M_v (GeV) M_x (GeV) Geliang Liu | LLR, Ecole polytechnique 20 Jul 2024 13

CMS

$X \rightarrow ZZ \rightarrow 4I$: various width assumption

CMS-PAS-HIG-24-002

This is **ggF production**; **VBF production** shown in <u>backup</u>

CMS-PAS-SUS-24-001 Search for X/A→bb

$\phi(H,h,A) \rightarrow bb:$ Analysis strategy

CMS-PAS-SUS-24-001

> Search for ϕ (H,h,A) \rightarrow bb associated with \geq 1 b

Online and offline selection

> Full hadronic (FH): double-b-jet triggers, with high pT thresholds

> Semi leptonic (SL): one of the two leading jets contains a muon from the b hadron decay

> Three off-line b-tagged jets, with different kinematic requirements

Discriminating variable: $M_{j_1j_2}$ (jet ordered by pT)

Process modeling

- > Signals: from MC, fitted with the DCB function. Predicted to be narrow.
- Backgrounds (QCD multijet): smooth functions fitted from control regions (defined that j₃ not b-tagged), corrected with transfer functions from MC

CMS

CMS-PAS-SUS-24-001

$\phi(H,h,A) \rightarrow bb: results$

Model-independent search

MSSM interpretation:

2HDM interpretation:

20 Jul 2024

dataset

also tested

CMS-PAS-HIG-22-004 Search for $A \rightarrow ZH \rightarrow IITT$

A→ZH→IITT: Analysis strategy

Physics

- A pseudoscalar Higgs boson predicted from MSSM, decaying to Z(II)H(TT)
- Two production mechanisms: ggF and bbA, predicted to be the dominating ones in certain scenarios

Event selection and categorization

- > Single e/ μ triggers on Z \rightarrow II (I=e/ μ)
- > Select leptons (e, μ , hadronic τ)
- \succ Build the Z and H candidate
- ➤ Categorize based on the number of b jet tagged with DeepJet: 0 b jet and ≥ 1 b jet category.
- FastMTT algorithm to construct H($\tau\tau$), with $M_{\tau\tau}$ fixed at the Higgs boson mass

A→ZH→IITT: Analysis strategy

Discriminating variable: $M_{ll\tau\tau}$

Process modeling

- Signals: by MC
- Irreducible backgrounds: by MC
- Reducible backgrounds: by a data-driven method

CMS

CMS-PAS-HIG-22-004

No excess observed

Conclusion

Conclusion

Four results published in 2024 on searches for additional Higgs bosons are shown.

- scalar $X \rightarrow YH \rightarrow \gamma\gamma\tau\tau/\tau\tau\gamma\gamma$
- scalar $X \rightarrow ZZ \rightarrow 4I$ produced via ggF/VBF
- scalar/pseudoscalar $\phi \rightarrow$ bb associated with b jets
- pseudoscalar $A \rightarrow ZH \rightarrow IITT$ produced via ggF/bbA

No Significant excess observed.

• Still blinded from new physics

More exploration are needed!

- With Run 3 data to further constrain more phase space and to check potential hints
- New ideas to search for new physics are welcome

Conclusion

Four results published in 2024 on searches for additional Higgs bosons are shown.

- scalar $X \rightarrow YH \rightarrow \gamma\gamma\tau\tau/\tau\tau\gamma\gamma$
- scalar $X \rightarrow ZZ \rightarrow 4I$ produced via ggF/VBF
- scalar/pseudoscalar $\phi \rightarrow$ bb associated with b jets
- pseudoscalar $A \rightarrow ZH \rightarrow IITT$ produced via ggF/bbA

No Significant excess observed.

• Still blinded from new physics

More exploration are needed!

- With Run 3 data to further constrain more phase space and to check potential hints
- New ideas to search for new physics are welcome

Thanks for your attention!

Backup

The CMS detector

- Raw: 40 MHz
- Level-1 trigger: 100 kHz
- High level trigger: 1 kHZ

 $X \rightarrow HH/YH \rightarrow \gamma\gamma\tau\tau$: pNN training

Object Group	Features			
$ au_h, e, \mu$, IsoTrack	p_T , η , multiplicity			
Photon	$p_T/m_{\gamma\gamma}$, η , pixel veto			
Diphoton	$p_T/m_{\gamma\gamma},\eta,\Delta\phi(\gamma^1,\gamma^2),\Delta R(\gamma^1,\gamma^2)$			
Jet	$p_T, \eta, b-tag$ multiplicity, b-jet multiplicity	+ $M_{\gamma\gamma\tau\tau}$		
MET	p_T			
Composite	$m_{\tau\tau}^{SVFit}$, $\Delta R(\gamma\gamma, \tau\tau^{SVFit})$, $\Delta\phi$ (MET, $\gamma\gamma$), m_X			
Other	Channel (τ_h , $\tau_h \tau_h$, $\tau_h \mu$,)			

Categorization optimization

 From the highest pNN score, add up 10 background events every time until the limit won't increase by > 1% to decide one category. Keep on doing so until all events are assigned.

Category		1	2	3	4	5	6
$\mathrm{X}^{(0)} ightarrow \mathrm{HH}$	10	10	10	10	20	80	-
$\mathrm{X}^{(2)} ightarrow \mathrm{HH}$	10	10	10	10	20	80	-
$ m X ightarrow m Y(au au) m H(\gamma\gamma)$	10	10	10	10	20	80	320
Low-Mass $X \to Y(\gamma \gamma) H(\tau \tau) Y \to \gamma \gamma$	10	10	10	10	20	80	320
High-Mass $X \to Y(\gamma \gamma)H(\tau \tau)$	10	10	10	10	20	80	320

CMS

$X \rightarrow ZZ \rightarrow 4I$: signal modeling

Geliang Liu | LLR, Ecole polytechnique

$X \rightarrow ZZ \rightarrow 4I$: various width assumption

MSSM interpretation M_h^{mod+} scenario

MSSM interpretation hMSSM scenario

2HDM interpretation Flipped scenario

