

EFT interpretations in the Higgs sector with CMS

Irene Dutta *for CMS collaboration* 42nd International Conference on High Energy Physics 20th July, 2024

CMS

Why look for new physics in the Higgs sector?

Particle couplings to Higgs **not yet** measured at 1% precision

Why look for new physics in the Higgs sector?

Look for BSM hints in HH measurements

New Physics is likely heavy (> 1 TeV)

Reasonable to assume SM is a low energy approximation of a more complex model

Look for deviations in kinematic distributions

Discovery through precision measurements!

Look for deviations in kinematic distributions

Discovery through precision measurements!

Scope of this talk : SMEFT and HEFT interpretations in Higgs

See <u>D.Moran talk</u> for anomalous Higgs boson couplings and <u>B. Camaiani talk</u> for STXS and differential measurements

SMEFT : SM Effective Field Theory

SM with series of higher dimensional operators which are invariant under SU(3) x SU(2) x U(1) symmetry

Higgs field : SU(2) doublet

Probe EFT Wilson coefficients c_i of dimension-6 operators

SMEFT : SM Effective Field Theory

SM with series of higher dimensional operators which are invariant under SU(3) x SU(2) x U(1) symmetry

Higgs field : SU(2) doublet

Probe EFT Wilson coefficients c_i of dimension-6 operators

+...

One operator can affect many processes ... Many operators can affect one process ...

Needs a global EFT data analysis approach

EFT search in combination of $H \rightarrow X$ decays

Combination of analyses : <u>JHEP07(2023) 091</u>, <u>JHEP08(2023) 040</u>, <u>JHEP03(2021) 003</u>, <u>Phys. Rev. Lett. 128, 081805</u>, <u>arXiv:2403.20201</u>

Signal processes : $H \rightarrow \gamma\gamma$, $H \rightarrow ZZ$, $H \rightarrow WW$, $H \rightarrow \tau\tau$, $H \rightarrow \tau\tau$ (boosted)

EFT search in combination of $H \rightarrow X$ decays

2D scans of Wilson Coefficients

EFT search in combination of $H \rightarrow X$ decays

EFT search in t(t)X

Global approach : 26 dimension six operators fitted simultaneously

JHEP 12 (2023) 068

Signal processes: ttlv, ttll, ttH, tZq, tHq, tttt

43 categories based on multiplicity of charged leptons + jets

EFT search in t(t)X

Global approach : 26 dimension six operators fitted simultaneously

JHEP 12 (2023) 068

Signal processes: ttlv, ttll, ttH, tZq, tHq, tttt

43 categories based on multiplicity of charged leptons + jets Further binning of each category with

- p_{T} of most energetic pair of leptons and jets, OR
- p_{T} of Z boson candidate

178 total analysis bins → binned maximum likelihood fit

JHEP 12 (2023) 068

EFT search in t(t)X

Improving previous constraints from JHEP 03 (2021) 095 by factors of 2 to 6

11

EFT search in semi-leptonic ttH with boosted H→bb

Global approach : 8 dimension six operators fitted simultaneously

Higher sensitivity to coupling deviations in boosted regime

EFT search in semi-leptonic ttH with boosted H→bb

🛟 Fermilab

HEFT : Higgs Effective Field Theory

Chiral perturbation theory, no power counting unlike SMEFT

Higgs field : EW singlet

$$\Delta \mathcal{L}_{HEFT} = -m_t (\kappa_t \frac{h}{\nu} + c_2 \frac{h^2}{\nu^2}) \bar{t}t - \kappa_\lambda \frac{m_h^2}{2\nu} h^3 + \frac{\alpha_s}{8\pi} (c_g \frac{h}{\nu} + c_{2g} \frac{h^2}{\nu^2}) G^a_{\mu\nu} G^{\mu\nu,a}$$

HEFT benchmark limits

** New since ICHEP 2022

Explore HEFT sensitivity with 20 coupling configurations JHEP04(2016)126, JHEP03(2020)091

Scans of HEFT parameters

** New since ICHEP 2022

Summary

- EFT is a powerful tool to test precision of SM and search for new physics
- CMS is actively pursuing a global approach to EFT analyses which include Higgs, top .. etc
- Looking forward to exciting times in Run 3 and beyond!

New physics can lurk in unexpected places

... Thank you !

Backup

EFT search in t(t)X

Crouping of MICs	MC	Land antegories	WC/ Λ^2 [TeV ⁻²]	2σ Interval (others profiled)	2σ Interval (others fixed to SM)
auarks with	WCS	Leau categories	$C_t^{T(\ell)}$	[-0.37, 0.37]	[-0.40, 0.40]
Two heavy two leptons	$C_{2}^{3(\ell)} = C_{2}^{-(\ell)} = C_{2}^{(\ell)} = C_{2}^{(\ell)}$	3ℓ off-Z	$c_{\star}^{S(\ell)}$	[-2.60, 2.59]	[-2.80, 2.80]
	$\mathcal{Q}_{\ell}^{\ell}$, $\mathcal{Q}_{\ell}^{\ell}$, \mathcal{Q}_{Qe}^{ℓ} , $\mathcal{Q}_{t\ell}^{\ell}$, \mathcal{Q}_{e}^{ℓ} , $\mathcal{Q}_{t\ell}^{\ell}$, \mathcal{Q}_{e}^{ℓ} , $\mathcal{Q}_{t\ell}^{\ell}$,		$C_{\ell}^{(\ell)}$	[-1.76.2.20]	[-1.90, 2.39]
	$c_{\rm te}$, $c_{\rm t}$, $c_{\rm t}$		$\int_{\ell}^{\ell} \ell^{\ell}$	[-1.78, 2.10]	[-2, 01, 2, 20]
Four heavy <mark>quarks</mark>	$c_{\mathrm{OO}}^1, c_{\mathrm{Ot}}^1, c_{\mathrm{Ot}}^8, c_{\mathrm{tt}}^1$	$2\ell ss$	$\mathcal{L}_{t\ell}$	[-1.70, 2.10]	
quarks with Two boowy two light "ttlu-liko"	c ¹¹ c ¹⁸ c ¹ c ⁸	2/00	$C_{Qe}^{(\ell)}$	[-1.89, 1.94]	[-2.04, 2.12]
quarks with	C_{Qq} , C_{Qq} , C_{tq} , C_{tq}	2055	$c_{Q\ell}^{-(\ell)}$	[-1.56, 2.27]	[-1.80, 2.33]
Two heavy two light "tllq-like"	c_{Qq}^{31}, c_{Qq}^{38}	3ℓ on-Z	$c_{O\ell}^{3(\ell)}$	[-2.81, 2.54]	[-2.68, 2.58]
quarks with		2ℓ on Z and $2\ell_{\rm es}$	$c_{\varphi t}^{\sim}$	[-10.76, 7.91]	[-4.95, 3.19]
quarks with	$\iota_{tZ}, \iota_{\varphi t}, \iota_{\varphi Q}$		$c_{\varphi tb}$	[-3.23, 3.23]	[-3.15, 3.19]
Two heavy with bosons "tXq-like"	$c_{\varphi Q}^3$, $c_{\varphi tb}$, c_{bW}	3ℓ on-Z	$c_{\varphi Q}^3$	[-0.81, 2.01]	[-0.84, 1.91]
quarks with Two beavy with bosons with signif-		31 and 21ss	c _{bW}	[-0.75, 0.76]	[-0.75, 0.75]
icant impacts on many processes		5¢ and 2¢55	c _{tG}	[-0.27, 0.24]	[-0.22, 0.25]
			$c_{\varphi Q}^{-}$	[-6.09, 8.20]	[-2.66, 2.95]
		dial a	$C_{t\varphi}$	[-8.98, 2.85]	[-7.68, 2.15]
Summary of categ	jories that prov	lde	C _{tZ}	[-0.70, 0.63]	[-0.58, 0.59]
leading contributions	to the sensitiv	vity for	C _{tW}	[-0.54, 0.45]	[-0.47, 0.41]
			c_{Qt}^1	[-2.71, 2.66]	[-2.75, 2.62]
SUDSETS OF	the wcs.		$c_{\rm Ot}^8$	[-5.15, 5.74]	[-5.24, 5.66]
			$c_{OO}^{\tilde{1}}$	[-3.03, 3.28]	[-3.04, 3.28]
			$c_{tt}^{\tilde{1}}$	[-1.56, 1.60]	[-1.54, 1.63]
			C_{ta}^8	[-0.67, 0.25]	[-0.68, 0.24]
			$c_{\Omega q}^{18}$	[-0.68, 0.21]	[-0.67, 0.21]
			$\int c_{ta}^{1}$	[-0.21, 0.21]	[-0.22, 0.20]
			$c_{\Omega q}^{11}$	[-0.19, 0.19]	[-0.19, 0.19]
			$c_{Oq}^{\tilde{3}\tilde{8}^{1}}$	[-0.17, 0.16]	[-0.17, 0.16]
			$\int c_{Qq}^{\tilde{3}\tilde{1}^{1}}$	[-0.08, 0.07]	[-0.08, 0.07]

EFT search in semi-leptonic ttH with boosted H→bb

Operator	Definition	WC
$O_{u\phi}^{(ij)}$	$\overline{\mathrm{q}}_{\mathrm{i}}\mathrm{u}_{\mathrm{j}}\widetilde{arphi}\left(arphi^{\dagger}arphi ight)$	$c_{t\varphi} + ic_{t\varphi}^{I}$
$O_{arphi q}^{(\mathrm{ij})}$	$(\varphi^{\dagger}i\overleftrightarrow{D}_{\mu}\varphi)(\overline{q}_{i}\gamma^{\mu}q_{j})$	$c_{\varphi Q}^{-} + c_{\varphi Q}^{3}$
$O_{arphi \mathrm{q}}^{\mathrm{3(ij)}}$	$(\varphi^{\dagger}i\overleftrightarrow{D}_{\mu}^{\mathrm{I}}\varphi)(\overline{q}_{\mathrm{i}}\gamma^{\mu}\tau^{\mathrm{I}}q_{\mathrm{i}})$	$c_{\varphi Q}^3$ Ignore imaginary
$O^{(ij)}_{arphi \mathrm{u}}$	$(\varphi^{\dagger}i\overleftrightarrow{D}_{\mu}\varphi)(\overline{\mathrm{u}}_{\mathrm{i}}\gamma^{\mu}\mathrm{u}_{\mathrm{j}})$	$c_{\varphi t}$ terms which are CP
${}^{\dagger}O_{\varphi ud}^{(ij)}$	$(\tilde{\varphi}^{\dagger}iD_{\mu}\varphi)(\overline{\mathrm{u}}_{\mathrm{i}}\gamma^{\mu}\mathrm{d}_{\mathrm{j}})$	$c_{\varphi tb} + i c_{\varphi tb}^{V}$
$O_{uW}^{(ij)}$	$(\overline{q}_{i}\sigma^{\mu u} au^{I}u_{j}) ilde{\phi}W^{I}_{\mu u}$	$c_{\rm tW} + ic_{\rm tW}^{\rm T}$
$O_{\rm dW}^{(ij)}$	$(\overline{\mathrm{q}}_{\mathrm{i}}\sigma^{\mu u} au^{\mathrm{I}}\mathrm{d}_{\mathrm{j}})\varphi\mathrm{W}_{\mu u}^{\mathrm{I}}$	$c_{\rm bW} + i c_{\rm bW}^{\rm L}$
${}^{\ddagger}O_{\mathrm{uB}}^{(\mathrm{ij})}$	$(\overline{\mathbf{q}}_{\mathbf{i}}\sigma^{\mu u}\mathbf{u}_{\mathbf{j}})\widetilde{\varphi}\mathbf{B}_{\mu u}$	$\frac{\mathcal{C}_{W}}{\mathcal{S}_{W}}(c_{tW}+ic_{tW}^{I})-\frac{1}{\mathcal{S}_{W}}(c_{tZ}+ic_{tZ}^{I})$

WC/Λ^2	95% CL interval [TeV $^{-2}$]								
	(Others profiled)	(Others fixed to SM)							
$c_{\mathrm{t}\varphi}/\Lambda^2$	[0.56, 30]	[0.20, 30]							
$c_{\varphi Q}^{-}/\Lambda^{2}$	[-8.3, 9.9]	[-6.6, 8.7]							
$c_{\varphi Q}^3 / \Lambda^2$	[-4.4, 3.9]	[-4.1, 3.0]							
$c_{\varphi t}/\Lambda^2$	[-13, 7.9]	[-12, 6.3]							
$c_{\varphi { m tb}}/\Lambda^2$	[-10, 12]	[-9.9, 11]							
$c_{\rm tW}/\Lambda^2$	[-1.6, 1.6]	[-1.0, 0.96]							
$c_{\rm bW}/\Lambda^2$	[-4.3, 4.3]	[-4.2, 4.2]							
$c_{\rm tZ}/\Lambda^2$	[-1.7, 1.7]	[-1.0, 1.1]							

Simultaneous fit of 8 WCs

HEFT Interpretation benchmarks

	12+1 benchmarks of <u>JHEP04(2016)126</u>												
	1	2	3	4	5	6	7	8	9	10	11	12	8a
kl	7.5	1.0	1.0	-3.5	1.0	2.4	5.0	15.0	1.0	10.0	2.4	15.0	1.0
kt	1.0	1.0	1.0	1.5	1.0	1.0	1.0	1.0	1.0	1.5	1.0	1.0	1.0
c2	-1.0	0.5	-1.5	-3.0	0.0	0.0	0.0	0.0	1.0	-1.0	0.0	1.0	0.5
cg	0.0	-0.8	0.0	0.0	0.8	0.2	0.2	-1.0	-0.6	0.0	1.0	0.0	0.8/3
c2g	0.0	0.6	-0.8	0.0	-1.0	-0.2	-0.2	1.0	0.6	0.0	-1.0	0.0	0.0

	7 benchmarks of JHEP03(2020)091											
	1	2	3	4	4 5		7					
kl	3.94	6.84	2.21	2.79	3.95	5.68	-0.10					
kt	0.94	0.61	1.05	0.61	1.17	0.83	0.94					
c2	-1./3.	1./3.	-1./3.	1./3.	-1./3.	1./3.	1.					
cg	0.5*1.5	0.0*1.5	0.5*1.5	-0.5*1.5	1./6.*1.5	-0.5*1.5	1./6.*1.5					
c2g	1./3.*(-3.)	-1./3.*(-3.)	0.5 *(-3.)	1./6.*(-3.)	-0.5 *(-3.)	1./3.*(-3.)	-1./6.*(-3.)					

$HH \to \tau \tau \gamma \gamma$

Search in hadronic + leptonic τ final states

 Background modelling: Analytic functions determined by fitting the m_{vv} spectrum

CMS-PAS-HIG-22-012

 Signal (and single Higgs): double Crystal Ball fitted on simulation

22

Older HEFT results from CMS

JHEP 03 (2021) 257

