Searches for pairs of Higgs bosons at CMS

Cristina Mantilla-Suarez (Fermilab, UVA) For the CMS collaboration

ICHEP 2024

- HH: motivation and phenomenology
- Survey of CMS results with 13 TeV data
- NEW result with 13 TeV data
- Run-3 prospects
- Summary

Higgs pair production

• A direct probe of the Higgs self-interaction (λ)

Higgs pair production

• A direct probe of the Higgs self-interaction (λ)

This term helps to map out the shape of the Higgs potential

The SM prediction of V: $V(h) = V_0 +$ (expansion at the minimum)

> HH production Mass Term HHH production

• In the SM: $\lambda_{hhh} = \lambda_{hhhh} \sim 1/8$

$$\frac{1}{2}m_H^2h^2 + \lambda_{hhh}vh^3 + \frac{1}{4}\lambda_{hhhh}h^4$$

HH production predictions

- Goal is to accurately and precisely measure $\kappa_{\lambda} = \lambda_{obs}/\lambda_{SM} = 1$
- HH small at the LHC: ~1000x smaller than H

• Destructive interference between diagrams, for example in ggHH:

HH production predictions

- Goal is to accurately and precisely measure $\kappa_{\lambda} = \lambda_{obs}/\lambda_{SM} = 1$
- HH small at the LHC: ~1000x smaller than H

• Destructive interference between diagrams, for example in ggHH:

HH production beyond the self-coupling

- HH pairs also probe other couplings
- For example: VBF production probes HHVV interaction, κ_{2V}

Survey of HH results by CMS

• "Big 3" final states driving the sensitivity

		bb	$WW_{>=1}$	$_{\ell}WW_{4q}$	$\tau \tau$	ĽL	
	bb	34%					
Rarer Jecay	$WW_{>=1\ell}$	13.4%	1.3%				
	WW_{4q}	11.6%	1.1%	2.1%			
	au au	7.3%	1.4%	1.2%	0.39%		
	ZZ	3.1%	0.6%	0.2%	0.33%	0.069%	
	γγ	0.26%	0.05%	0.04%	0.028%	0.012%	0

Higgs boson decay branching ratios result in rich set of final states

bbbb:

ggFHH, VBFHH: (Boosted) Phys. Rev. Lett. 131, 041803 (Resolved) Phys. Rev. Lett. 129, 081802 VVHH: <u>arXiv:2404.08462</u>

bb $\tau\tau$:

ggFHH, VBFHH: Phys. Lett. B 842 (2023) 137531

 $bb\gamma\gamma$: ggFHH, VBFHH: JHEP03 (2021) 257

Rarer decay

Survey of HH results by CMS

• "Big 3" final states driving the sensitivity

Higgs boson decay branching ratios result in rich set of final states

Survey of HH results by CMS

• "Big 3" final states driving the sensitivity

Higgs boson decay branching ratios result in rich set of final states

bbbb:

Controlling background uncertainties at O(%)

bbbb:

7

Controlling background uncertainties at O(%)

Sensitivity driven by $\tau_h \tau_h$. Hadronic tau triggers are critical

bbbb:

7

Controlling background uncertainties at O(%)

 $bb\gamma\gamma$:

Sensitivity driven by $\tau_h \tau_h$. Hadronic tau triggers are critical

bbbb:

7

Controlling background uncertainties at O(%)

Sensitivity driven by $\tau_h \tau_h$. Hadronic tau triggers are critical

Fit both $m_{\gamma\gamma}$ and m_{jj} . Energy resolution is key.

Run-2 so far: relative sensitivities

Sensitivity to SM HH

HH (bb VV): all-hadronic

- Unexplored final state at the LHC
 - Includes W(qq), Z(qq) decays: BR = 13%
- Focus on "boosted" regime, high p⊤ QCD background dominant, but reduced
- Study ggF and VBF production: target k_{2V} modifications at high m_{HH}

<u>CMS-PAS-HIG-23-012</u>

HH (bb VV): tagging

• A "likely" VBF HH(bb VV) event:

CMS Experiment at the LHC, CERN Data recorded: 2016-Jun-03 22:34:09.632903 GMT Run / Event / LS: 274388 / 310609526 / 159

bb-tagged Jet

VV-tagged Jet

First use of <u>ParticleTransformer</u>. Identify **3 or 4 quarks inside a jet:** 30% less efficient than bb

HH (bb VV): tagging

• A "likely" VBF HH(bb VV) event:

CMS Experiment at the LHC, CERN Data recorded: 2016-Jun-03 22:34:09.632903 GMT Run / Event / LS: 274388 / 310609526 / 159

W

bb-tagged Jet

Extra challenge: calibrate signal efficiency per subjet (see LundPlane poster)

VV-tagged Jet

First use of <u>ParticleTransformer</u>. Identify **3 or 4 quarks inside a jet:** 30% less efficient than bb

HH (bb VV): results

Data-driven background

 Parametric "transfer factor" from QCD enriched region

- No relevant constraint to κ_{λ}
 - SM HH cross section < $(69)142 \times SM$
- But, powerful constraint on κ_{2V}

HH (bb VV): results

Data-driven background Parametric "transfer factor" from QCD

 $k_{2V} \in [-0.04, 2.05]$

The imminent "future": Run-3

Reconstruction improvements: Jet p_T <u>regression</u> with ParticleNet improves response resolution by ~15% (after calibration)

Trigger improvements:

- ML in trigger: ParticleNet, DeepTau
- Added data streams ("Parking")

Lower p_T threshold for bbbb, $bb\tau\tau$

Improvements applicable for other bbXX channels (e.g. $bb_{\gamma\gamma}$, bbVV)

- Extensive study of HH production with Run-2 data
- Exploring "new" channels:

 - Less sensitive but potential in combination • Boosted regime: powerful constraints of k_{2V}
- Measurement of κ_{λ} is a cornerstone of HL-LHC:
 - Well-established search channels
 - Critical to overcome limitations from hadronic triggers and reconstruction
- Exciting prospects for Run-3, and 13.6 TeV data!